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A. Supplementary Results
Appearance variation. Figure 2 shows additional results
of diverse appearances modeled by our proposed staged
training method on the San Marco dataset. As in Figure 6
in the main text, it shows realistic renderings of five dif-
ferent scenes/viewpoints under four different appearances
obtained from other photos.

Qualitative comparison. We evaluate our technique
against Shan et al. [3] on the Colosseum. In Section 4, we
report the result of a user study run on 20 randomly selected
sets of output images that do not contain close-ups of people
or cars, and were not in our training set. Figures 3, 4 show
a side-by-side comparison of all 20 images used in the user
study.

Quantitative evaluation with learned segmentations
To quantitatively evaluate rerendering using estimated seg-
mentation masks, we generate semantic labelings for the
validation set, as described in Section 3.3, and recompute
the quantitative metrics, as in Table 1 in the main paper, for
our proposed method. Note that estimated semantic maps
will not perfectly match those of the ground truth validation
images. For example, ground truth semantic maps could
contain the segmentation of transient objects, like people or
trees. So, it is not fair to compare reconstructions based
on estimated segmentation maps to the ground truth vali-
dation images. While results in Table 1 show some perfor-
mance drop as expected, we still get a reasonable perfor-
mance compared to that in Table 1 in the main text. In fact,
we still perform better than the BicycleGAN baseline on
the Trevi, Pantheon and Dubrobnik datasets, even though
the BicycleGAN baseline uses ground truth segmentation
masks.

B. Implementation Details
We use different networks for the staged training and the

baseline mode. We obtain best results for each model with
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+Sem+StagedApp
Dataset VGG L1 PSNR

Sacre Coeur 67.74 28.66 16.45
Trevi 77.35 26.03 17.90
Pantheon 62.54 25.40 17.29
Dubrovnik 74.44 30.39 16.18
San Marco 75.58 26.69 17.34

Table 1: We evaluate our staged training approach using estimated
segmentation masks, as opposed to Table 1 in the paper, which
uses segmentation masks computed from ground truth validation
images.

different networks. Below, we provide an overview of the
different architectures used in the staged training and the
baseline models. Code will be available at https://bit.
ly/2UzYlWj.

B.1. Neural rerender network architecture

Our rerendering network is a symmetric encoder-
decoder with skip connections. The generator is adopted
from [1] without using progressive growing. Specifically,
we extend the GAN architecture in [1] to a conditional GAN
setting. The encoder/decoder operates at a 256 × 256 res-
olution, with 6 downsampling/upsampling blocks. Each
block has a downsampling/upsampling layer followed by
two single-strided 3 × 3 conv layers with a leaky ReLu (
α = 0.2) and pixel-norm [1] layers. We add skip con-
nections between the encoder and decoder by concatenat-
ing feature maps at the beginning of each decoder block.
We use 64 feature maps at the first encoder and double the
size of feature maps after each downsampling layer until it
reaches size 512.

B.2. Appearance encoder architecture

We implement the appearance encoder architecture used
in [2] except that we add pixel-norm [1] layers after each
downsampling block. We observe that adding a pixel-wise
normalization layer stabilizes the training while at the same
time avoids mixing information between different pixels as
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(a) initial rendering (b) depth map (c) original image

Figure 1: Sample frames of the aligned dataset. Even though in-
terior structures can be seen through the walls in the point cloud
rendering (bottom), neural rerendering is able to reason about oc-
clusion among the points and thereby avoid rerendering artifacts.
Image credits: James Manners, Patrick Denker (Creative Commons).

in instance norm or batch norm. We use a latent appear-
ance vector za ∈ R8. The latent vector is injected at the
bottleneck between the encoder and decoder in the render-
ing network. We tile za to match the dimension of fea-
ture maps at the bottleneck and concatenate it to the feature
maps channel-wise.

B.3. Baseline architecture

We use a faithful Tensorflow implementation of the
encoder-decoder network and appearance encoder in [2] us-
ing their PyTorch released code as a guideline. We adapt
their training pipeline to the single-domain supervised setup
as described in Section 3.2 in our paper.

B.4. Aligned datasets

Figure 1 shows sample frames from aligned datasets we
generate as described in Section 3.1 in the paper.

B.5. Latent space visualization

Figure 5 visualizes the latent space learned by the ap-
pearance encoder, Ea, after appearance pretraining and
finetuning in our staged training, as well as trainingEa with
the BicycleGAN baseline. The embedding learned during
the appearance pretraining stage shows meaningful clusters,
but has lower quality than the one learned after finetuning,
which is comparable to the one of the BicycleGAN base-
line.



Figure 2: We capture the appearance of the original images in the first row, and rerender several viewpoints under them. The first column
shows the rendered point cloud images used as input to the rerenderer. Image credits: Michael Pate, Jeremy Thompson, Patrick Denker, Rob Young
(Creative Commons).



Figure 3: Comparison with Shan et al. [3] – set 1 of 2. First and third columns show the result of Shan et al. [3]. Second and fourth
columns show our result.



Figure 4: Comparison with Shan et al. [3] – set 2 of 2. First and third columns show the result of Shan et al. [3]. Second and fourth
columns show our result.



(a) Our staged training: After appearance pretraining.

(b) Our staged training: After finetuning.

(c) BicycleGAN baseline.

Figure 5: t-SNE plots for the latent appearance space learned by the appearance encoder (a) after appearance pretraining in our staged
training, (b) after finetuning in our staged training, and (c) using the BicycleGAN baseline.
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