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A. Overview

This document provides additional dataset visualization
and statistics (Sec B), hierarchical template design details
and visualization (Sec C), and the architectures and training
details for the three shape segmentation tasks (Sec D), to
the main paper.

B. More Dataset Visualization and Statistics

We present more visualization and statistics over the pro-
posed PartNet dataset.

B.1. More Fine-grained Segmentation Visualization

Figure 5 and 6 show more visualization for fine-grained
instance-level segmentation annotations in PartNet. We ob-
serve the complexity of the annotated segmentation and the
heterogeneous variation of shapes within each object cate-
gory.

B.2. More Hierarchical Segmentation Visualization

Figure 7, 8 and 9 show more visualization for exam-
ple hierarchical instance-level segmentation annotations in
PartNet. We visualize the tree-structure of the hierarchical
segmentation annotation with the 2D part renderings asso-
ciated to the tree nodes.

B.3. Shape Statistics

We report the statistics for the number of annotations,
unique shapes and shapes that we collect multiple human
annotations in Figure 1.

B.4. Part Statistics

We report the statistics for the number of part semantics
for each object category in Figure 2. We also present the
statistics for the maximum and median number of part in-
stances per shape for each object category in Figure 3. We

Figure 1. PartNet shape statistics. We report the statistics for the
number of annotations, unique shapes and shapes that we collect
multiple human annotations.

report the statistics for the maximum and median tree depth
for each object category in Figure 4.

C. More Template Design Details and Visual-
ization

We provide more details and visualization for the expert-
defined hierarchical templates to guide the hierarchical seg-
mentation annotation and the template refinement proce-
dure to resolve annotation inconsistencies.

C.1. Template Design Details

We design templates according to the rules of thumb that
we describe in the main paper. We also consulted many on-
line references1 that describe object parts (often for man-
ufacturing and assembly) and previous works that relate
language to the shapes [2] as guides for the design of our

1E.g. http://www.props.eric-hart.com/resources/parts-of-a-chair/.
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Figure 2. PartNet part semantics statistics. We report the statis-
tics for the number of part semantics for each object category.

Figure 3. PartNet part instance statistics. We report the statistics
for the maximum and median number of part instances per shape
for each object category.

template. To ensure that our templates cover most of the
shape variations and part semantics of each object category,
we generated a t-SNE [5] visualization for the entire shape
space to study the shape variation. We trained an auto-
encoder based on the shape geometry within each object
category to obtain shape embeddings for the t-SNE visual-
ization.

Although we try to cover the most common part seman-
tics in our templates, it is still not easy to cover all possi-
ble object parts. Thus, we allow annotators to deviate from
the templates and define their own parts and segmentation
structures. Among all the annotated part instances, 1.3% of
them are defined by the annotators. In the raw annotation,
13.1% of shapes contained user-defined part labels.

Our analysis shows that our template designs are able
to cover most of the ShapeNet [1] shapes. Of the 27,260
shapes we collected in total, our annotators successfully la-

Figure 4. PartNet tree depth statistics. We report the statistics
for the maximum and median tree depth for each object category.

beled 26,671 of them, giving our templates a coverage rate
of at least 97.8% for ShapeNet shapes. While template cov-
erage is a potential issue, the remaining 2.2% were not an-
notated mainly due to other issues such as poor mesh qual-
ity, classification error, error during mesh splitting, etc.

We design hierarchical templates that cover both the
coarse-level part semantics and fine-grained part details
down to the primitive level, e.g. chair back vertical bar
and bed base surface panel. Most primitive-level parts are
atomic such that they are very unlikely to be further divided
for end applications. If an application requires different
segmentation hierarchy or level of segmentation than the
ones we already provide in our template, developers and re-
searchers can try to build up their own segmentation based
upon the atomic primitives we obtain in PartNet.

Moreover, we try our best to make the shared part con-
cepts among different shapes and even different object cat-
egories share the same part labels. For example, we use the
part label leg for table, chair, lamp base, etc. and the part
label wheel for both chair swivel base wheel and refriger-
ator base wheel. Such part concept sharing provides rich
part correspondences within a specific object category and
across multiple object categories.

C.2. Template Refinement Details

Fine-grained shape segmentation is challenging to anno-
tate due to the subtle concept gaps among similar part se-
mantics. Even though we provide detailed textual and vi-
sual explanation for our pre-defined parts, we still observe
some annotation inconsistencies across multiple annotators.
To quantitatively diagnose such issues, we reserve a small
subset of shapes for which we collect multiple human anno-
tations. We compute the confusion scores among the pre-
defined parts across the multiple annotations and conduct
careful template refinement to reduce the part ambiguity.



Avg Bag Bed Bott Bowl Chair Clock Dish Disp Door Ear Fauc Hat Key Knife Lamp Lap Micro Mug Frid Scis Stora Table Trash Vase
Oavg 69.8 54.8 70.0 87.5 87.7 59.0 62.1 67.3 85.2 64.4 74.1 69.9 86.8 77.0 75.0 44.6 61.6 71.0 91.0 65.3 88.7 68.0 40.1 51.4 72.6
Oavg 19.0 29.3 17.4 6.9 8.1 26.7 24.6 19.1 17.8 15.2 15.6 17.6 9.5 17.9 14.6 29.0 27.1 19.3 10.6 27.7 9.0 21.3 29.3 23.3 19.5
Ravg 83.3 82.1 76.2 89.3 91.7 77.8 91.1 81.5 94.0 77.0 83.0 84.7 89.3 89.6 77.8 72.7 78.3 84.4 91.7 85.1 90.2 77.1 71.4 71.0 92.3
Rstd 10.4 11.1 9.2 6.0 7.4 15.2 7.0 7.2 2.8 11.2 13.5 8.6 10.3 3.5 14.9 17.3 14.6 9.1 9.7 6.2 8.6 12.8 22.6 13.2 7.5

Table 1. The average confusion scores and the standard deviations for multiple annotations (%). We report the average confusion
scores and the standard deviations by calculating over the entries on the diagonal of the confusion matrix for each object category using
the small subset of shapes that we collect multiple human annotations. Rows O and R respectively refer to the scores before and after the
template refinement process.

There are primarily three sources of such inconsisten-
cies: boundary ambiguity, granularity ambiguity and part
labeling ambiguity. Boundary ambiguity refers to the un-
clear boundary between two parts, which is also commonly
seen in previous works [3, 10]. For example, the boundary
between the bottle neck and the bottle body is not that clear
for wine bottles. Granularity ambiguity means that different
annotators have different understanding about the segmen-
tation granularity of the defined parts. One example is that,
for a curvy and continuous chair arm, one can regard it as
a whole piece or imagine the separation of armrest and arm
support. The most common type of ambiguity in our dataset
is the part labeling ambiguity. The fine-grained part con-
cepts, though intended to be different category-wise, may
apply to the same part on a given object. For example,
a connecting structure between the seat and the base of a
chair can be considered as chair seat support or chair base
connector.

We study the mutual human agreement on the multiple
annotation subset. We consider the parts defined at the leaf
node level of segmentation on the hierarchy and compute
the confusion matrix across multiple human annotations2.
The ideal confusion matrix should be close to the diagonal
matrix without any part-level ambiguity. In our analysis, we
observe human disagreement among some of our initial part
definitions. To address the ambiguity, we either merge two
similar concepts with high confusion scores or remove the
hard-to-distinguish parts from evaluation. For example, we
find our annotators often mix up the annotation for regular
tables and desks due to the similarity in the two concepts.
Thus, we merge the desk subtype into the regular table sub-
type to address this issue. In other cases, some small parts
such as the buttons on the displays are very tricky to seg-
ment out from the main display frame. Since they may not
be reliably segmented out, we decided to remove such un-
clear segmentation from evaluation.

Table 1 compares the annotation consistency before and
after the template refinement process. We compute the con-
fusion matrices at the most fine-grained segmentation level.
After the template refinement, the data consistency score
is 83.3% on average, having 13.5% improvement over the
raw annotation. The template refinement process improves

2We consider the entire path labels as histories to the leaf nodes when
computing the confusion matrix.

the annotation consistency by a clear margin. This also re-
flects the complexity of the task in terms of annotating fine-
grained part concepts. Future works may investigate how to
further design better templates with less part ambiguities.

C.3. More Visualization of Hierarchical Templates

Figure 10, 11 and 12 show more visualization for the
expert-designed hierarchical templates after resolving the
data inconsistency and conducting template refinements.
We show the lamp template in the main paper.

D. Tasks and Benchmarks
In this section, we provide more details about the archi-

tectures and training details for the benchmark algorithms.
We also present additional evaluation metrics, shape mean
Intersection-over-Union (shape mIoU) and shape mean
Average-Precision (Shape mAP), and report the quantitative
results using these metrics.

D.1. Fine-grained Semantic Segmentation

More Architecture and Training Details We follow the
default architectures and training hyper-parameters used in
the original papers: PointNet [6], PointNet++ [7], Spider-
CNN [9] and PointCNN [4], except the following few mod-
ifications:

• Instead of training one network for all object categories
as done in the four prior works, we train separate net-
works for each object category at each segmentation
level. This is mainly to handle the increase in the num-
ber of parts for fine-grained part segmentation. Origi-
nally, there are only 50 parts for all 16 object categories
using the coarse ShapeNet Part dataset [10]. Now, us-
ing PartNet, there could be 480 different part seman-
tics in total. Also, due to the data imbalance among
different object categories, training a single network
may overfit to the big categories.

• We change the input point cloud size to 10,000. The
original papers usually sample 1,000, 2,000 or 4,000
points and input to the networks. PartNet suggests to
use at least 10,000 to guarantee enough point sampling
over small fine-grained parts, e.g. a door handle, or a
small button.



Avg Bag Bed Bott Bowl Chair Clock Dish Disp Door Ear Fauc Hat Key Knife Lamp Lap Micro Mug Frid Scis Stora Table Trash Vase
P1 71.8 59.3 39.6 81.0 78.5 81.8 67.1 78.9 88.2 71.1 68.0 67.5 58.5 65.6 66.5 46.5 96.5 75.0 84.2 79.6 86.5 55.9 85.6 66.7 76.3
P2 50.1 − 21.3 − − 52.4 − 60.0 − 47.1 − − − − − 43.5 − 64.3 − 63.9 − 48.8 50.0 − −
P3 48.2 − 13.0 55.3 − 44.8 37.8 55.2 79.0 38.8 47.5 55.5 − − 40.0 34.7 − 54.5 − 53.2 − 47.4 42.5 46.4 74.0
Avg 63.4 59.3 24.6 68.2 78.5 59.7 52.4 64.7 83.6 52.3 57.8 61.5 58.5 65.6 53.2 41.6 96.5 64.6 84.2 65.6 86.5 50.7 59.4 56.5 75.2
P+1 76.8 72.7 54.7 85.8 78.5 84.5 74.1 81.9 90.7 73.5 77.8 73.6 64.2 62.5 75.0 65.5 96.6 80.3 90.9 72.1 87.5 61.2 86.7 71.5 81.4
P+2 54.7 − 34.8 − − 54.9 − 60.6 − 57.0 − − − − − 56.8 − 63.0 − 58.4 − 52.9 53.6 − −
P+3 53.4 − 25.1 61.0 − 49.6 46.1 52.5 81.0 48.0 56.1 60.4 − − 49.1 46.0 − 54.3 − 50.7 − 50.6 47.0 54.7 75.1
Avg 68.1 72.7 38.2 73.4 78.5 63.0 60.1 65.0 85.8 59.5 67.0 67.0 64.2 62.5 62.0 56.1 96.6 65.9 90.9 60.4 87.5 54.9 62.4 63.1 78.2
S1 73.9 72.9 55.9 86.1 83.4 83.8 72.1 73.3 90.4 60.4 70.6 71.5 71.6 64.6 42.1 59.1 97.1 78.6 91.6 68.7 77.0 64.2 83.8 74.4 79.5
S2 53.3 − 37.8 − − 53.6 − 65.3 − 55.0 − − − − − 41.4 − 62.1 − 62.6 − 49.8 51.7 − −
S3 48.0 − 27.2 52.8 − 44.7 44.2 51.1 77.2 40.7 47.5 53.7 − − 27.3 35.7 − 54.4 − 52.4 − 53.1 43.3 48.0 62.3
Avg 65.1 72.9 40.3 69.4 83.4 60.7 58.1 63.2 83.8 52.0 59.0 62.6 71.6 64.6 34.7 45.4 97.1 65.0 91.6 61.2 77.0 55.7 59.6 61.2 70.9
C1 75.5 72.0 55.3 83.6 75.0 83.9 65.6 81.8 91.9 68.1 74.5 71.1 66.8 70.4 68.1 55.6 97.1 83.1 92.7 78.9 92.6 58.8 85.5 67.7 71.8
C2 52.1 − 36.6 − − 52.9 − 63.4 − 54.9 − − − − − 42.4 − 64.1 − 57.7 − 54.4 42.7 − −
C3 49.6 − 29.1 58.7 − 47.7 36.2 55.3 81.5 40.4 55.8 60.7 − − 26.4 34.4 − 58.7 − 50.8 − 52.3 37.4 50.8 67.0
Avg 66.3 72.0 40.3 71.2 75.0 61.5 50.9 66.8 86.7 54.5 65.2 65.9 66.8 70.4 47.2 44.1 97.1 68.6 92.7 62.5 92.6 55.2 55.2 59.2 69.4

Table 2. Fine-grained semantic segmentation results (shape mIoU %). Algorithm P, P+, S and C refer to PointNet [6], PointNet++
[7], SpiderCNN [9] and PointCNN [4], respectively. The number 1, 2 and 3 refer to the three levels of segmentation: coarse-, middle- and
fine-grained. We put short lines for the levels that are not defined.

• We reduce the batch sizes for training the networks if
necessary. Since we use point cloud size 10,000, to fit
the training in NVIDIA TITAN XP GPU 12G memory,
we need to adjust the training batch size accordingly.
For PointNet [6], PointNet++ [7], SpiderCNN [9] and
PointCNN [4], we use batch size of 24, 24, 2 and 4
respectively.

• We only input 3D coordinates as inputs to all the net-
works for fair comparison. Although the 3D CAD
models in ShapeNet [1] usually provide additional fea-
tures, e.g. opacity, point normals, textures and material
information, there is no guarantee for the quality of
such information. Thus, we choose not to use them as
the inputs. Also, only using pure geometry potentially
increase the network generalizability to unseen objects
or real scans [6]. PointNet++ [7] and SpiderCNN [9]
by defaults take advantage of the point normals as ad-
ditional inputs. In this paper, we remove such inputs
to the networks. However, point normals can be esti-
mated from the point clouds. We leave this as a future
work.

Shape mIoU Metric and Results We introduce the shape
mean Intersect-over-Union (Shape mIoU) evaluation metric
as a secondary metric to the Part-category mIoU metric in
the main paper. Shape mIoU metric considers shapes as
evaluation units and measures how an algorithm segment
an average shape in the object category. In contrast, Part-
category mIoU reports the average performance over all part
semantics and indicates how an algorithm performs for any
given part category.

Shape mIoU is widely used on ShapeNet Part
dataset [10] for 3D shape coarse semantic segmentation [6,

7, 9, 4]. We propose a slightly different version for fine-
grained semantic segmentation. For each test shape, we first
compute the IoU for each part semantics that either presents
in the ground-truth or is predicted by the algorithm, and
then we calculate the mean IoU for this shape. We remove
the ground-truth unlabeled points from the evaluation. Fi-
nally, we calculate the Shape mIoU by averaging mIoU over
all test shape instances.

We benchmark the four algorithms using Shape mIoU in
Table 2. Besides the Shape mIoU scores for each object cat-
egory at each segmentation level, we also report the average
across levels for each object categories and further calculate
the average over all object categories.

We observe that PointNet++ [7] achieves the best perfor-
mance using the Shape mIoU metric, while PointCNN [4]
performs the best using the Part-category mIoU metric.
The Part-category mIoU metric considers all part semantics
equally while the Shape mIoU metric considers all shapes
equally. We observe an unbalanced counts for different part
semantics in most object categories, e.g. there are much
more chair legs than chair wheels. To achieve good numbers
on Part-category mIoU, a segmentation algorithm needs to
perform equally well on both frequent parts and rare parts,
while the Shape mIoU metric bias over the frequently ob-
served parts.

D.2. Hierarchical Semantic Segmentation

We describe the architecture and training details for the
three baseline methods we propose for hierarchical seman-
tic segmentation in the main paper. All three methods use
PointNet++ [7] segmentation network as the network back-
bone. The difference of the three methods is mainly on the
training and inference strategies to enforce the tree knowl-
edge to the final prediction.



Avg Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Stora Table Trash Vase
Bottom-Up 65.9 42.0 74.3 63.8 64.1 66.3 84.2 61.4 70.0 74.2 67.1 62.7 63.0 60.8 57.8 65.7 62.8 80.9
Top-Down 65.9 42.0 73.7 62.3 65.5 64.0 85.5 63.1 71.1 73.5 68.8 63.3 62.7 58.8 57.6 66.2 63.0 79.3
Ensemble 66.6 42.9 74.4 64.3 65.5 62.7 85.8 63.7 71.7 74.0 66.7 63.4 61.9 61.5 60.6 67.5 64.0 82.2

Table 3. Hierarchical segmentation results (shape mIoU %). We present the hierarchical segmentation performances for three baseline
methods: bottom-up, top-down and ensemble. We conduct experiments on 17 out of 24 categories with tree depth bigger than 1.

The Bottom-up Method The bottom-up method learns a
network to perform segmentation at the most fine-grained
leaf part semantics. We use the PointNet++ [7] segmenta-
tion network with a softmax activation layer as the network
architecture. At inference time, we use the ground-truth tree
hierarchy to gather the prediction for the parent nodes. The
parent node prediction is the sum of all its children node
predictions. Even though we only train for the leaf node
parts, the parent history is implicitly encoded. For exam-
ple, we define vertical bars for both chair back and chair
arm, but they are two different leaf node parts: chair back
vertical bar and chair arm vertical bar.

In the ground-truth annotation, all the points in the point
cloud belong to the root node. Each point is assigned a path
of labels from the root node to some intermediate node in
the tree. The paths for most points are all the way down
to the leaf levels while some points may not. For example,
a point on a bed blanket (removed from evaluation since it
cannot be distinguished without color information) may be
assigned with labels {bed, bed unit, sleeping area} in the
ground-truth annotation. The part sleeping area is not a leaf
part. For such cases, we introduce an additional leaf node
other for each parent node in the tree and consider them in
the training.

The Top-down Method The top-down method learns a
multi-labeling task for all the part semantics in the tree,
considering both the leaf nodes and the parent nodes. Com-
pared to the bottom-up method, the top-down method takes
advantage of the tree structures at training time.

Assuming there are T tree nodes in the hierarchy, we
train a PointNet++ [7] segmentation network for a T -way
classification for each point. We apply a softmax activation
layer to enforce label mutual exclusiveness. For a point with
the ground-truth labels {y1, y2, y3} and prediction softmax
scores {si|i = 1, 2, · · · , T}, we train the labels using a
multi-labeling cross-entropy loss

L = − log(sy1
)− log(sy2

)− log(sy3
) (1)

to increase the values of all the three label predictions over
the rest labels.

The Ensemble Method The ensemble method trains
multiple neural networks at different levels of segmentation
as defined in the fine-grained semantic segmentation task.
The key idea is that conducting segmentation at the coarse-,

middle- and fine-grained levels separately may learn differ-
ent features that work the best at each level. Compared to
the bottom-up method that we only train at the most fine-
grained level, additional signal at the coarse level helps dis-
tinguish the coarse-level part semantics more easily. For
example, the local geometric features for both chair back
vertical bars and chair arm vertical bars may be very similar,
but the coarse-level semantics may distinguish chair backs
and chair arms better.

During the training, we train 2∼3 networks at multiple
levels of segmentation. At the inference time, we perform a
joint inference considering the prediction scores from all the
networks. We use a path-voting strategy: for each path from
the root node to the leaf node, we calculate the average log-
likelihood over the network prediction scores after applying
the softmax activations, and select the path with the highest
score as the joint label predictions.

Shape mIoU Metric and Results Similar to Sec D.1,
we define Shape mIoU for hierarchical segmentation. The
mIoU for each shape is calculated over the part semantics in
the entire hierarchical template that are either predicted by
the network or included in the ground-truth. The unrelated
parts are not taken into consideration. Table 3 shows the
quantitative evaluation for the three baseline methods. We
observe similar performance for the three methods, with the
ensemble method works slightly better.

D.3. Instance Segmentation

More Architecture and Training Details To train our
proposed method, we use batch size 32, learning rate 0.001,
and the default batch normalization settings used in the
PointNet++ [7].

For SGPN [8], we use two-stage training as suggested by
the authors of [8]. We first pretrain the PointNet++ seman-
tic segmentation branch using batch size 32 and learning
rate 0.001, with the default batch normalization as in Point-
Net++. And then, we jointly train for the semantic segmen-
tation, similarity score matrix and confidence scores with
batch size 1 and learning rate 0.0001. As suggested in the
original SGPN paper, for the first five epochs of the joint
training, we only turn on the loss for training the similarity
scores matrix. The rest training epochs are done with the
full losses switched on. We have to use batch size 1 be-
cause the input point cloud has the size of 10,000 and thus
the similarity score matrix forms a 10, 000 × 10, 000 ma-



Avg Bag Bed Bott Bowl Chair Clock Dish Disp Door Ear Fauc Hat Key Knife Lamp Lap Micro Mug Frid Scis Stora Table Trash Vase
S1 72.5 62.8 38.7 76.7 83.2 91.5 41.5 81.4 91.3 71.2 81.4 82.2 71.9 23.2 78.0 60.3 100 76.2 94.3 60.6 74.9 55.0 80.1 76.1 87.1
S2 50.2 − 22.7 − − 51.1 − 78.7 − 43.3 − − − − − 49.1 − 68.6 − 42.9 − 51.9 43.7 − −
S3 50.2 − 17.5 66.5 − 42.3 40.7 59.3 83.9 29.0 60.2 61.6 − − 55.0 37.6 − 53.7 − 30.6 − 45.1 37.8 50.0 82.0
Avg 64.2 62.8 26.3 71.6 83.2 61.6 41.1 73.1 87.6 47.8 70.8 71.9 71.9 23.2 66.5 49.0 100 66.2 94.3 44.7 74.9 50.7 53.8 63.0 84.6
O1 80.3 78.4 62.2 80.8 83.8 94.9 74.6 81.4 94.3 76.1 87.1 86.5 77.8 44.5 76.6 65.0 100 79.5 95.3 79.0 87.6 62.7 88.1 82.3 89.0
O2 60.5 − 29.4 − − 64.7 − 75.4 − 61.1 − − − − − 56.8 − 78.2 − 61.7 − 57.4 59.4 − −
O3 57.7 − 22.1 68.3 − 58.4 53.7 67.5 84.8 38.0 62.4 66.8 − − 63.5 45.8 − 54.0 − 45.0 − 52.6 52.5 58.7 86.4
Avg 72.2 78.4 37.9 74.6 83.8 72.7 64.2 74.8 89.5 58.4 74.8 76.6 77.8 44.5 70.1 55.8 100 70.6 95.3 61.9 87.6 57.6 66.7 70.5 87.7

Table 4. Instance segmentation results (shape mAP %, IoU threshold 0.5). Algorithm S and O refer to SGPN [8] and our proposed
method respectively. The number 1, 2 and 3 refer to the three levels of segmentation: coarse-, middle- and fine-grained. We put short lines
for the levels that are not defined.

trix, which occupies too much GPU memory. Our proposed
method is more memory-efficient, compared to SGPN. We
also observe that our training is much faster than SPGN. We
train all the networks until convergence.

Shape mAP Metric and Results We define Shape mean
Average-Precision (Shape mAP) metric as a secondary met-
ric to the Part-category mAP metric in the main paper. Sim-
ilar to the Shape mIoU scores we use in Sec D.1 and D.2,
Shape mAP reports the part instance segmentation perfor-
mance on an average shape in a object category. It averages
across the test shapes, instead of averaging across all differ-
ent part semantics, as benchmarked by Part-category mAP
in the main paper.

To calculate Shape mAP for a test shape, we consider
the AP for the part semantics that occur either in the ground-
truth or the prediction for the given shape and compute their
average as the mean AP score. Then, we average the mAP
across all test shapes within a object category. Table 4 re-
ports the part instance segmentation performance under the
Shape mAP scores. We see a clear performance improve-
ment of the proposed method over SGPN.
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Figure 5. Fine-grained instance-level segmentation visualization (1/2). We present visualization for example fine-grained instance-level
segmentation annotations for chair, bag, bed, bottle, bowl, clock, dishwasher, display, door, earphone, faucet, and hat.
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Figure 6. Fine-grained instance-level segmentation visualization (2/2). We present visualization for example fine-grained instance-level
segmentation annotations for storage furniture, keyboard, knife, laptop, lamp, microwave, mug, refrigerator, scissors, table, trash can, and
vase.



Figure 7. Hierarchical instance-level segmentation visualization (1/3). We present visualization for example hierarchical instance-level
segmentation annotations for bed, clock, storage furniture, faucet, table, and chair. The lamp examples are shown in the main paper. The
And-nodes are drawn in solid lines and Or-nodes in dash lines.



Figure 8. Hierarchical instance-level segmentation visualization (2/3). We present visualization for example hierarchical instance-level
segmentation annotations for dishwasher, laptop, display, trash can, door (door set), earphone, vase (pot), and keyboard. The lamp examples
are shown in the main paper. The And-nodes are drawn in solid lines and Or-nodes in dash lines.



Figure 9. Hierarchical instance-level segmentation visualization (3/3). We present visualization for example hierarchical instance-level
segmentation annotations for scissors, microwave, knife (cutting instrument), hat, bowl, bottle, mug, bag, and refrigerator. The lamp
examples are shown in the main paper. The And-nodes are drawn in solid lines and Or-nodes in dash lines.



Figure 10. Template visualization (1/3). We present the templates for table and chair. The lamp template is shown in the main paper. The
And-nodes are drawn in solid lines and Or-nodes in dash lines.



Figure 11. Template visualization (2/3). We present the templates for storage furniture, faucet, clock, bed, knife (cutting instrument), and
trash can. The lamp template is shown in the main paper. The And-nodes are drawn in solid lines and Or-nodes in dash lines.



Figure 12. Template visualization (3/3). We present the templates for earphone, bottle, scissors, door (door set), display, dishwasher,
microwave, refrigerator, laptop, vase (pot), hat, bowl, bag, mug, and keyboard. The lamp template is shown in the main paper. The
And-nodes are drawn in solid lines and Or-nodes in dash lines.


