
Meta-learning Convolutional Neural Architectures for Multi-target Concrete
Defect Classification with the COncrete DEfect BRidge IMage Dataset:

Supplementary Material

Martin Mundt1∗, Sagnik Majumder1, Sreenivas Murali1∗, Panagiotis Panetsos2, Visvanathan Ramesh1∗

1. Goethe University 2. Egnatia Odos A. E.
{mmundt, vramesh}@em.uni-frankfurt.de {majumder, murali}@ccc.cs.uni-frankfurt.de

ppane@egnatia.gr

A. Content overview

The supplementary material contains further details for ma-
terial presented in the main body.

We start with an extended description of the CODE-
BRIM dataset in section B. Here, we provide the specific
settings for the employed cameras for dataset image acqui-
sition. In addition to the histogram presented in the main
body that shows number of different defects per bounding
box, we further provide a histogram with amount of bound-
ing box annotations per image. Additional material reveals
specifics of the main body’s figure depicting the large vari-
ations in distribution of bounding boxes by illustrating the
individual nuances of this distribution per defect class. The
supplementary dataset material is concluded with a brief
discussion on background patch generation.

In supplementary section C we provide a brief discus-
sion on why multi-target accuracy is a better reward met-
ric than naive single-class accuracies and show what multi-
target accuracies would translate to in terms of a naive av-
erage single-class accuracy. We give detailed descriptions
and graphs of the six meta-learned architectures for the top
three models obtained through MetaQNN and ENAS. Al-
though it isn’t an immediate extension to the main body, but
rather additional content, we provide a compact section on
transfer learning with experiments conducted with models
pre-trained on the ImageNet and MINC datasets. We have
decided to move these experiments to the the supplemen-
tary material for the interested reader as they do not show
any improvements over the content presented in the main
body. We conclude the supplementary material with exam-
ples for images that are commonly classified correctly as
well as showing some typical false multi-target classifica-
tions to give the reader a better qualitative understanding of
the dataset complexity and challenges.

* work conducted while at Frankfurt Institute for Advanced Studies

B. CODEBRIM dataset

B.1. Delamination as a defect class

Some of the CODEBRIM dataset features images that
have a defect that is typically referred to as delimation. It
is a stage where areas start to detach from the surface. De-
lamination can thus be recognized by a depth offset of a
layer from the main surface body. However, in images ac-
quired by a single camera, especially if the images were
acquired using a camera view direction that is orthogonal to
the surface, these boundaries are often visually not distin-
guishable from cracks. Without further information, even
a civil engineering expert faces major difficulty in such a
distinction between these categories. We have thus decided
to label eventual occurrences of delamination together with
the crack category.

B.2. Cameras

We show the four cameras used for acquisition of dataset
images in table 1. All chosen cameras have a resolution
above Full-HD, with the highest resolution going up to
6000 × 4000 pixels. For two cameras we have used a
lens with varying focal length, whereas two cameras had
a lens with fixed focal length of 50 and 55mm respec-
tively. We have further systematically varied aperture in
conjunction with the use of diffused flash modules to homo-
geneously illuminate dark bridge areas, while also adjust-
ing for changing global illumination (avoiding heavy over
or under-exposure). A different very crucial aspect was the
employed exposure time. Pictures acquired by UAV were
generally captured with a much shorter exposure time to
avoid blurring of the image due to out of focus acquisition
or inherent vibration and movement of the UAV. One of our
cameras, Sony α-6000 has thus exclusively been used in the
context of UAV based image acquisition with an exposure
time of 1/1000 seconds.

We show how the CODEBRIM dataset is practically

1



Camera Resolution [pixels] Exposure [s] f [mm] F-value [f/] ISO Flash
Canon IXUS 870 IS 2592× 1944 flexible 5− 20 2.8− 5.8 100− 800 none
Panasonic DMC-FZ72 4608× 3456 1/250 4− 42 5.6 400 built-in
Nikon D5200 6000× 4000 1/200 55 11.0 200 built-in
Sony α-6000 6000× 3376 1/1000 50 2.0− 5.6 50− 400 HVL-F43M

Table 1: Description of cameras, including resolution, exposure time in fraction of a second, focal length f in mm, the
aperture or F-value in terms of focal length, ISO speed rating and information on potentially used flash.

0 1000 2000 3000 4000 5000 6000
Larger side

0

1000

2000

3000

4000

Sm
al

le
r s

id
e

Image sizes

Figure 1: Distribution of image resolutions. Smaller and
larger side refer to the image’s larger and smaller dimen-
sion.

0 1 2 3 4 5 6
Number of defects

0

500

1000

1500

2000

2500

3000

N
um

be
r o

f a
nn

ot
at

io
ns

Defects per annotation (bounding box)

Figure 2: Histogram of number of simultaneously occurring
defect classes per annotated bounding box.

comprised of the varying resolutions resulting from use
with different cameras and settings in figure 1. We can ob-
serve that the aspect ratio is almost constant with changes
in absolute resolution and that the large majority of images
has been acquired at very high resolutions.

B.3. Annotation process

After curating acquired images by excluding the major-
ity of images that do not have defects, we employed a multi-
stage annotation process to create a multi-class multi-target
classification dataset using the annotation tool LabelImg [2]

0 10 20 30 40 50
Number of annotations (bounding boxes)

0

50

100

150

200

N
um

be
r o

f i
m

ag
es

Annotations (bounding boxes) per image

Figure 3: Distribution of number of bounding box annota-
tions per image.

in consultation with civil engineering experts:

1. We first annotated bounding boxes for areas containing
defects in the Pascal format [1].

2. Each individual bounding box was analyzed with re-
spect to one defect class and a corresponding label was
set if the defect is present.

3. After finishing the entire set of bounding boxes for one
class, we repeated step 2 for the remaining classes and
arrived at a multi-class multi-target annotation.

4. In the last stage, we sampled bounding boxes contain-
ing background (concrete without defects as well as
non-concrete) according to absolute count, aspect ra-
tios and size of annotated defect bounding boxes.

The reason for staging the process is that we found the an-
notation process to be less error prone if annotators had to
concentrate on the presence of one defect at a time.

B.4. Further dataset statistics

We show additional information and statistics of the
dataset. In figure 2 we show a histogram that demonstrates
how one bounding box annotation typically contains more
than one defect class at a time. In figure 3 the comple-
mentary histogram of the number of annotated bounding
boxes per image can be found. Here, we can further observe



0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Crack bounding box sizes

0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Spallation bounding box sizes

0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Efflorescence bounding box sizes

0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Exposed bar bounding box sizes

0 1000 2000 3000 4000 5000 6000
Larger Side

0

1000

2000

3000

4000

Sm
al

le
r S

id
e

Corrosion stain bounding box sizes

Figure 4: Individual distributions of annotated bounding box sizes for each of the 5 defect classes.

0 5 10 15 20 25
Aspect ratio: width / height

0

200

400

600

800

N
um

be
r o

f b
ou

nd
in

g 
bo

xe
s

Crack bounding box aspect ratios

0 5 10 15 20 25
Aspect ratio: width / height

0

100

200

300

400

500

600

N
um

be
r o

f b
ou

nd
in

g 
bo

xe
s

Spallation bounding box aspect ratios

0 5 10 15 20 25
Aspect ratio: width / height

0

50

100

150

200

250

N
um

be
r o

f b
ou

nd
in

g 
bo

xe
s

Efflorescence bounding box aspect ratios

0 5 10 15 20 25
Aspect ratio: width / height

0

100

200

300

400

N
um

be
r o

f b
ou

nd
in

g 
bo

xe
s

Exposed bar bounding box aspect ratios

0 5 10 15 20 25
Aspect ratio: width / height

0

100

200

300

400

500

600

N
um

be
r o

f b
ou

nd
in

g 
bo

xe
s

Corrosion stain bounding box aspect ratios

Figure 5: Individual distributions of number of bounding box annotations for different aspect ratios for each of the 5 defect
classes.

that our choice of bridges led to image acquisition scenar-
ios where one acquired image generally contains multiple
different defect locations. While this is not impacting our
classification task, we believe it is a crucial precursor for
future extensions to a realistic semantic segmentation sce-
nario.

In addition to the distribution of the annotated bounding
box sizes for background and for all the defects combined
as shown in the main body, the reader might be interested in
the specific distribution per defect class. In figure 4 the cor-
responding distribution of annotated bounding boxes per-
class is shown. Similarly, figure 5 contrasts the aspect ra-
tio distributions for the individual defects. It is to be noted
that these per-class distributions are not mutually exclusive
because of multi-target overlap in the bounding box anno-

tations. All individual classes have a similarly distributed
bounding box size per defect including a long tail towards
large resolutions. A major difference for individual classes
can be found at high resolutions between the crack and ef-
florescence classes and the spallation, exposed bar and cor-
rosion stain classes. The latter sometimes span an entire
image. While this of course depends on the acquisition dis-
tance, we point out that in images acquired at a similar dis-
tance spalled and corroded areas including bar exposition
are larger on average.

B.5. Random generation of background bounding
boxes

We emphasize that the CODEBRIM dataset has many
factors that add to the complexity. Acquired images have



0 2 4 6 8 10 12 14
Aspect ratio: width / height

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r o

f b
ou

nd
in

g 
bo

xe
s

Bounding box aspect ratios

Defect
Background

Figure 6: Distribution of number of defect and background
bounding box annotations for different aspect ratios.

large variations depending on the target geometry, types of
defects and their overlapping behavior, the camera pose rel-
ative to the photographed surface (particularly if captured
by UAV), as well as global scene properties such as illumi-
nation. From a machine learning classification dataset point
of view it is thus interesting to capture this complexity in
the generation of image patches for the background class.

We therefore devote this supplementary section to pro-
vide further details to the reader on generation of back-
ground bounding boxes. Before administering the final
dataset, the last dataset creation step of sampling areas con-
taining background has been validated. Specifically, we
have checked whether the distribution of sizes (shown in
the main body) as well as the distribution of sampled ar-
eas’ aspect ratios approximately follow those of the human
annotated defects. In figure 6 we show the aspect ratios
for the annotated defects together with the sampled bound-
ing box aspect ratios for background. Whereas the overall
count for background is less than the integrated total amount
of defects (number of background samples roughly corre-
sponds to occurrence of each individual defect class), the
distribution of aspect ratios is confirmed to have the same
trend. We have further made sure that none of the back-
ground bounding boxes have any overlap with bounding
boxes annotated for defects and that bounding boxes for
background are evenly distributed among images. In sum-
mary, this methodology captures the complexity of surface
variations, target geometry, global illumination and makes
sure that image patch resolution and sizes reflect those of
defect annotations.

C. Deep convolutional neural networks for
multi-target defect classification

C.1. Per-class and multi-target CNN accuracies

As mentioned in the main body of this work, most im-
age classification tasks focus on the single target scenario
and an easy pitfall would be to treat our task in a similar

fashion. This would imply reporting classification accura-
cies independently per class and not treating the task in the
multi-target fashion. We remind the reader that this would
not represent the real-world scenario appropriately, where
one is interested in the severity of the degradation of the
inspected concrete structure. This severity is magnified if
two or more different defect classes are mutually occurring
and overlapping. Nevertheless, one idea could be to de-
sign the reward for the meta-learning algorithms based on
such individual class accuracies or the corresponding av-
erage. We report the validation accuracy per class (back-
ground and five defects) and their respective average for the
CNN literature baselines, together with the multi-target best
validation accuracy and the corresponding test accuracy in
table 2. Note that we do this only for the sake of com-
pleteness as this thought could occur to other researchers
and to show researchers the relationship between accuracy
values. Initially, a multi-target accuracy of 65% might not
look like a large value, but it practically translates to around
90% classification accuracy had each class been treated in-
dependently in our task. Apart from the above stated ob-
vious argument of resemblance to real-world application,
the table further indicates why the multi-target accuracy is
a better metric to employ in meta-learning reward design.
Although each of the baseline models learns to recognize
individual defects in the image with high precision, they
are not equally competent at recognizing all the defects to-
gether in the multi-target scenario. The individual class ac-
curacies do not have clear trends as they fluctuate individ-
ually, are difficult to interpret from one model to the next
and do not intuitively correlate with multi-target values. It
is thus a bad idea to base evaluation and model comparison
on single-target values and then later report multi-target ac-
curacies as the former does not linearly correlate with the
latter. We have noticed that rewards designed on the aver-
age per-class instead of multi-target accuracies lead to mod-
els that learn to predict only a subset of classes correctly and
neglect overlaps as there is no reward for higher recognition
rate of these overlaps.

C.2. Meta learned architecture definitions

We show the detailed configurations of the top three
MetaQNN and ENAS neural architectures for which accu-
racies are shown in the main body.

Table 3 shows the definitions for the top three meta-
learned models from MetaQNN on our task. Each convo-
lutional layer is expressed through quadratic filter size and
number of filters, followed by an optional specification of
padding or stride. If a skip connection/convolution has been
added it is added as an additional operation on the same
level and we specify the layer to which it skips to. The SPP
layer is characterized by the number of scales at which it
pools its feature input. As an example, scales = 4 indicates



Architecture Accuracy [%]

mt best val mt bv-test bv-bg bv-cr bv-sp bv-ef bv-eb bv-cs bv-avg

Alexnet 63.05 66.98 89.30 89.30 89.93 90.72 93.71 88.05 90.16
T-CNN 64.30 67.93 90.09 87.89 89.62 88.99 94.49 87.57 89.77
VGG-A 64.93 70.45 91.35 90.25 89.93 90.56 93.55 86.47 90.35
VGG-D 64.00 70.61 90.72 91.82 89.93 89.30 93.71 87.42 90.48
WRN-28-4 52.51 57.19 87.89 84.11 85.53 84.43 89.15 80.34 85.24
DenseNet-121 65.56 70.77 91.51 89.62 87.75 89.10 94.49 87.73 90.03

Table 2: Best validation model’s accuracies for each individual class (bg - background, cr - crack, sp - spallation, ef -
efflorescence, eb - exposed bars, cs - corrosion stain) and their average (avg) shown together with the multi-target accuracy
(mt best val) and the corresponding multi-target test accuracy (mt bv-test).

Layer type MetaQNN-1 MetaQNN-2 MetaQNN-3
conv 1 9× 9 - 256, s = 2 5× 5 - 128 3× 3 - 128, p = 1; 1× 1 - 128 (skip to 3)
conv 2 3× 3 - 32, p = 1 7× 7 - 32, s = 2 3× 3 - 128, p = 1
conv 3 5× 5 - 256 3× 3 - 256, p = 1; 1× 1 - 256 (skip to 5) 9× 9 - 128, s = 2
conv 4 7× 7 - 256, s = 2 3× 3 - 256, p = 1 3× 3 - 256, p = 1; 1× 1 - 256 (skip to SPP)
conv 5 3× 3 - 32 3× 3 - 256, p = 1
conv 6 9× 9 - 128, s = 2

SPP scales = 4 scales = 3 scales = 4
FC 1 128 128 64
classifier linear - 6, sigmoid linear - 6, sigmoid linear - 6, sigmoid

Table 3: Top three neural architectures of MetaQNN for our task. Convolutional layers (conv) are parametrized by a quadratic
filter size followed by the amount of filters. p and s represent padding and stride respectively. If no padding or stride is
specified then p = 0 and s = 1. Skip connections are an additional operation at a layer, with the layer where the connection
is attached to specified in brackets. A spatial pyramidal pooling (SPP) layer connects the convolutional feature extractor part
to the classifier. Every convolutional and FC layer are followed by a batch-normalization and a ReLU and each model ends
with a linear transformation with a Sigmoid function for multi-target classification.

four adaptive pooling operations such that the output width
times height corresponds to 1 × 1, 2 × 2, . . . 4 × 4. The
fully-connected (FC) layer is defined by the number of fea-
ture outputs it produces. All convolutional and FC layers
are followed by a batch-normalization and a ReLU layer.

Figure 7 shows graphical representations of the top three
neural models of ENAS for our task. All of the ENAS archi-
tectures have seven convolutional layers followed by a lin-
ear transformation as defined prior to the search. We have
chosen a visual representation instead of a table because
the neural architectures (acyclic graphs) contain many skip
connections that are easier to perceive this way. All convo-
lutions have quadratic filter size and a base amount of 64
features that is doubled after the second and forth layer as
defined by a DenseNet growth strategy with k = 2.

C.3. Transferring ImageNet and MINC features

We investigate transfer learning with features pre-trained
on the ImageNet and MINC datasets for a variety of neu-

Transfer learning
Architecture Source Accuracy [%]

best val bv-test

Alexnet ImageNet 60.53 62.87
VGG-A ImageNet 60.22 66.35
VGG-D ImageNet 56.13 65.56
Densenet-121 ImageNet 54.71 57.66
Alexnet MINC 60.06 66.50
VGG-D MINC 61.47 67.14

Table 4: Multi-target best validation and best validation
model’s test accuracy for fine-tuned CNNs with convolu-
tional feature transfer from models pre-trained on the MINC
and ImageNet datasets.



ral architectures by using pre-trained weights provided by
corresponding original authors. We fine-tune these mod-
els by keeping the convolutional features constant and only
training the classification stage for 70 epochs with a cycled
learning rate and other hyper-parameters as specified in the
main body. Best multi-target validation and associated test
values are reported in table 4. Although the pre-trained net-
works initially train much faster, we observe that transfer-
ring features from the unrelated ImageNet and MINC tasks
does not help, it in fact hinders the multi-target defect classi-
fication task. We postulate that this could be due to a variety
of factors like the task being too unrelated with respect to
the combination of object and texture recognition demanded
by our task. This observation matches previous work inves-
tigating transfer learning of object related features to texture
recognition problems. In such a scenario, the authors of [3]
find the need to evaluate feature importance and selectively
integrate only a subset of relevant ImageNet object features
to yield performance benefits for texture recognition and
prevent performance degradation. We further hypothesize
another possibility that the multi-target property of the task
could require a different abstraction of features from those
already present in the convolutional feature encoder of the
pre-trained models. Further investigation of transfer learn-
ing should thus consider an approach that doesn’t include all
pre-trained features, selects a subset of pre-trained weights
or employs different fine-tuning strategies.

C.4. Classification examples

In addition to the accuracy values reported in the main
body, we show qualitative example multi-target classifica-
tions as predicted by our trained MetaQNN-1 model. We
do this to give the reader a more comprehensive qualita-
tive understanding of the complexity and challenges of our
multi-target dataset. In order to better outline these chal-
lenges, we separate these examples into the following three
categories:

1. Correct multi-target classification examples where all
labels are predicted correctly.

2. False multi-target classification examples where at
least one present defect class is recognized correctly,
but one or more defect classes is missed or falsely pre-
dicted in addition.

3. False multi-target classification examples where none
of the present defect classes is recognized correctly.

Corresponding images, together with ground-truth labels
and the model’s predictions are illustrated in the respective
parts of figure 8. The few shown examples were picked to
show the variety of different defect types and their combi-
nations. Overall, the images show the challenging nature of

the multi-target task. Whereas the majority of multi-target
predictions are correct, the trained models face a number
of different factors that make classification difficult. Par-
ticularly, partially visible defect classes, amount of overlap,
variations in the surface, different exposure and illumina-
tion can lead to the model making false multi-target predic-
tions, where only a subset of targets is predicted correctly.

C.5. Alternative dataset splits

Architecture Multi-target accuracy [%] Params [M] Layers

val test

Alexnet 63.50 62.94 57.02 8
T-CNN 63.87 63.00 58.60 8
VGG-A 65.33 61.93 128.79 11
VGG-D 63.76 62.50 134.28 16
WRN-28-4 59.75 55.56 5.84 28
Densenet-121 66.54 65.93 11.50 121

ENAS-1 67.71 66.31 3.41 8
ENAS-2 66.50 64.37 2.71 8
ENAS-3 65.66 65.81 1.70 8
MetaQNN-1 66.70 65.91 4.53 6
MetaQNN-2 65.25 64.82 1.22 8
MetaQNN-3 70.95 67.56 2.88 7

Table 5: Evaluation in analogy to table 2 of the main body,
but on alternative dataset splits based on a per-bridge sepa-
ration.

The final dataset presented in the main portion of the pa-
per has been chosen to contain a random set of 150 unique
defect examples per class for validation and test sets respec-
tively. To avoid over-fitting we have further added the con-
straint that all crops stemming from bounding boxes from
one image must be contained in only one of the dataset
splits. The rationale behind this choice is to ensure a non-
overlapping balanced test and validation set in order to
avoid biased training that favors certain classes and report
skewed loss and accuracy metrics.

A different alternative way of conducting such a valida-
tion and test split is to split the data based on unique bridges.
Such an approach however features multiple challenges that
make it infeasible to apply in practice. In particular, not
every bridge has the same amount of defects and not ev-
ery bridge has the same amount of defects per class. Typ-
ically also defects of varying severity and overlap are fea-
tured (e.g. some have more early-stage cracks than exposed
bars). The main challenges thus are:

1. Only a certain combination of unique bridges can yield
an even approximately balanced dataset split in terms
of class presence.

2. Creation of class-balanced splits relies on either ex-
cluding some of the highly occurring defects or leaving



1: Conv_1
with

AvgPool

2: Conv_1
with

AvgPool

4: Conv_1
with

AvgPool
7: Conv_3_S

3: Conv_3

0: Input

5: Conv_1
with

MaxPool

6: Conv_5_S

8: Linear
with

Sigmoid

(a) ENAS-1

2: Conv_1
with

AvgPool

5: Conv_1
with

AvgPool

1: Conv_5_S

8: Linear
with

Sigmoid

6: Conv_3_S

4: Conv_3

7: Conv_1
with

MaxPool

3: Conv_1
with

MaxPool

0: Input

(b) ENAS-2

2: Conv_1
with

AvgPool

6: Conv_1
with

AvgPool

7: Conv_5

4: Conv_1
with

MaxPool

1: Conv_3

0: Input

5: Conv_1
with

MaxPool
3: Conv_5_S

8: Linear
with

Sigmoid

(c) ENAS-3

Figure 7: Top three neural architectures of ENAS for our task. Convolutions (conv) are denoted with quadratic filter size and
a post-fix ”S” for depth-wise separability. MaxPool and AvgPool are max and average pooling stages with 3 × 3 windows.
ENAS uses a pre-determined amount of features per convolutional layer during the search and during final training uses a
growth strategy of k = 2 similar to DenseNets. The amount of features per convolution is 64, doubled by the growth strategy
after layers 2 and 4. The graph is acyclic and all connections between layers are indicated by directed arrows.

the dataset split only approximately balanced. The lat-
ter could result in training a model that favors a partic-
ular class and skewed average metrics being reported.

The former can result in omitting particularly chal-
lenging or easy instances from the validation or test
set and accordingly distorting the interpretation of the



(a) Correct multi-target classification examples from the validation set. From left to right: 1.) exposed bar, corrosion, spalling. 2.)
spallation, exposed bars, corrosion and cracks. 3.) crack. 4.) efflorescence 5.) spallation and corrosion. 6.) spallation with exposed bars.

(b) False multi-target classification examples from the validation set where at least one present defect class is recognized correctly. From
left to right: 1.) corrosion (predicted corrosion and efflorescence). 2.) corrosion (predicted corrosion, spallation and exposed bar). 3.) crack
(predicted crack and efflorescence). 4.) spallation, exposed bar, corrosion (predicted spallation and corrosion). 5.) spallation, exposed bar,
corrosion (predicted crack and corrosion). 6.) efflorescence (predicted efflorescence and crack).

(c) False multi-target classification examples from the validation set where none of the present defect categories is recognized correctly.
From left to right: 1.) efflorescence (predicted background). 2.) crack (predicted background). 3.) exposed bar with corrosion (predicted
background). 4.) efflorescence (predicted background). 5.) corrosion (predicted spallation). 6.) exposed bar (predicted crack).

Figure 8: Multi-target classification examples from the validation set using the trained MetaQNN-1 model.

model’s accuracy.

3. Even when balancing the classes approximately by
choosing complementary bridges, the severity of de-
fects is not necessarily well sampled or balanced.

On the other hand, a bridge-based dataset split provides
more insights with respect to over-fitting concrete prop-
erties such as surface roughness, color, context or, given
that images at different bridges were acquired at different
points in time with variations in global scene conditions.
We therefore nevertheless investigate an alternative bridge-
based dataset split that is based on three bridges for valida-
tion and test set respectively. The bridges have been chosen
such that the resulting splits are approximately balanced in
terms of class occurrence, albeit with the crack category be-
ing more present and the efflorescence class being under-
sampled. The resulting accuracies should thus be consid-
ered with caution in direct comparison to the main paper.

Using this alternate dataset split we retrain all neural
architectures presented in the main paper. We note that
we have not repeated the previous hyper-parameter grid-
search and simply use the previously obtained best set of
hyper-parameters. In analogy, the meta-learning architec-
ture search algorithms have not been used to sample new
architectures specific to this dataset variant. The obtained
final validation and test accuracies are reported in table 5.
We re-iterate, that although we have coined the splits val-
idation and test set, the sets can be used interchangeably
here as no hyper-parameter tuning has been conducted on
the validation set.

Obtained accuracies are similar to the experimental results
presented in the paper’s main body. We can observe that
meta-learned architectures are not in exact previous order,
e.g. MetaQNN3 outperforms MetaQNN1. However, meta-
learned architectures still outperform the baselines and pre-
vious conclusions therefore hold. Due to the previously pre-



sented challenges in creation of an unbiased bridge-based
dataset we therefore believe our dataset splits presented in
the main body to be more meaningful to assess the models’
generalization capabilities.

References
[1] Mark Everingham, S. M.Ali Ali Eslami, Luc Van Gool,

Christopher K.I. I Williams, John Winn, and Andrew Zisser-
man. The Pascal Visual Object Classes Challenge: A Retro-
spective. International Journal of Computer Vision (IJCV),
111(1):98–136, 2014. 2

[2] Tzutalin. LabelImg. https://github.com/tzutalin/labelImg,
2015. 2

[3] Yan Zhang, Mete Ozay, Xing Liu, and Takayuki Okatani. In-
tegrating deep features for material recognition. In Interna-
tional Conference on Pattern Recognition (ICPR), 2016. 6


