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B. Extended Descriptions

In this section, we provide additional detailed descrip-
tions and implementation details.

B.1. Black-box Models

We supplement Section 5.1 by providing extended de-
scriptions of the blackboxes listed in Table 1 of the main
paper. Each blackbox Fy is trained on one particular image
classification dataset.

Py
P Caltech256 CUBS200 Indoor67 Diabetich
A (K=256) (K =200) (K=67) (K=5)
ILSVRC (Z=1000) 108 (42%) 2 (1%) 10 (15%) 0 (0%)
Openlmages (Z=601) 114 (44%) 1 (0.5%) 4 (6%) 0 (0%)

Table S1: Overlap between P4 and Py

Black-box 1: Caltech256 [5]. Caltech-256 is a popu-
lar dataset for general object recognition gathered by down-
loading relevant examples from Google Images and manu-
ally screening for quality and errors. The dataset contains
30k images covering 256 common object categories.

Black-box 2: CUBS200 [14]. A fine-grained bird-classifier
is trained on the CUBS-200-2011 dataset. This dataset con-
tains roughly 30 train and 30 test images for each of 200
species of birds. Due to the low intra-class variance, col-
lecting and annotating images is challenging even for expert
bird-watchers.

Black-box 3: Indoor67 [11]. We introduce another fine-
grained task of recognizing 67 types of indoor scenes. This
dataset consists of 15.6k images collected from Google Im-
ages, Flickr, and LabelMe.

Black-box 4: Diabetic5h [1]. Diabetic Retinopathy (DR)
is a medical eye condition characterized by retinal damage
due to diabetes. Cases are typically determined by trained
clinicians who look for presence of lesions and vascular ab-
normalities in digital color photographs of the retina cap-
tured using specialized cameras. Recently, a dataset of such
35k retinal image scans was made available as a part of a
Kaggle competition [[1]. Each image is annotated by a clini-
cian on a scale of 0 (no DR) to 4 (proliferative DR). This
highly-specialized biomedical dataset also presents chal-
lenges in the form of extreme imbalance (largest class con-
tains 30x as the smallest one).
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Figure S1: Performance of the knockoff at various budgets. (Enlarged version of Figure 5) Presented for various choices of adversary’s
image distribution (P4) and sampling strategy m. - represents accuracy of blackbox Fy and - represents chance-level performance.

100 Caltech256 CUBS200
> 75
§ 50
< 25
0

0 10k 20k 2k 4k

Budget B Budget B

Indoor67 Diabetich

0 5k 10k 0 10k 20k 30k

Budget B Budget B

Figure S2: Training on GT vs. KD. Extension of Figure 5. We compare sample efficiency of first two rows in Table 2: “Py (Fy)”
(training with GT data) and “Py (KD)” (training with soft-labels of GT images produced by Fv)

B.2. Overlap: Open-world

In this section, we supplement Section 5.2.1 in the main
paper by providing more details on how overlap was cal-
culated in the open-world scenarios. We manually com-
pute overlap between labels of the blackbox (K, e.g., 256
Caltech classes) and the adversary’s dataset (7, e.g., 1k
ILSVRC classes) as: 100 x |K N Z|/|K|. We denote two
labels £k € K and z € Z to overlap if: (a) they have
the same semantic meaning; or (b) z is a type of k e.g.,
z = “maltese dog” and k = “dog”. The exact numbers are

provided in Table [ST] We remark that this is a soft-lower
bound. For instance, while ILSVRC contains “Humming-
bird” and CUBS-200-2011 contains three distinct species
of hummingbirds, this is not counted towards the overlap as
the adversary lacks annotated data necessary to discriminate
among the three species.

B.3. Dataset Aggregation

All datasets used in the paper (expect Openlmages) have
been used in the form made publicly available by the au-
thors. We use a subset of Openlmages due to storage con-
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Figure S3: Training with non-ImageNet initializations of knockoff models. Shown for various choices of blackboxes Fy (subplots)
and adversary’s image distribution P4 (lines). All victim blackbox models are trained from scratch; test accuracy indicated by --- . All
knockoff models are either trained from scratch, or pretrained on the corresponding P4 task (suffixed with ‘(pt)’).

straints imposed by its massive size (9M images). The de-
scription to obtain these subsets are provided below.

Openlmages. We retrieve 2k images for each of the
600 Openlmages [8]] “boxable” categories, resulting in 554k
unique images. ~19k images are removed for either being
corrupt or representing Flickr’s placeholder for unavailable
images. This results in a total of 535k unique images.

Openlmages-Faces. We download all images (422k) from
Openlmages [8|] with label “/m/0dzct: Human face”
using the OID tool [13]]. The bounding box annotations are
used to crop faces (plus a margin of 25%) containing at least
180x 180 pixels. We restrict to at most 5 faces per image to
maintain diversity between train/test splits. This results in a
total of 98k faces images.

B.4. Additional Implementation Details

In this section, we provide implementation details to sup-
plement discussions in the main paper.

Input Transformations. = While training the blackbox
models Fy, we augment training data by applying input
transformations: random 224x224 crops and horizontal
flips. This is followed by performing normalizing the im-
age using standard Imagenet mean and standard deviation
values. While training the knockoff model F'4 and for eval-
uation, we resize the image to 256256, obtain a 224 x224
center crop and normalize as before.

Training Fy, = Diabeticb. We train this model using a
learning rate of 0.01 (while this is 0.1 for the other models)
and a weighted loss. Due to the extreme imbalance between
classes of the dataset, we weigh each class as follows. Let
ny, denote the number of images belonging to class k£ and
let nyin = ming ng. We weigh the loss for each class k
as Nmin /M. From our experiments with weighted loss, we
found approximately 8% absolute improvement in overall
accuracy on the test set. However, the training of knock-
offs of all blackboxes are identical in all aspects, including
a non-weighted loss irrespective of the victim blackbox tar-
geted.

Creating ILSVRC Hierarchy. We represent the 1k la-
bels of ILSVRC as a hierarchy (Figure 4b) in the form: root
node “entity” — N coarse nodes — 1k leaf nodes. We ob-
tain IV (30 in our case) coarse labels as follows: (i) a 2048-d
mean feature vector representation per 1k labels is obtained
using an Imagenet-pretrained ResNet ; (ii) we cluster the 1k
features into IV clusters using scikit-learn’s [10] implemen-
tation of agglomerative clustering; (iii) we obtain semantic
labels per cluster (i.e., coarse node) by finding the common
parent in the Imagenet semantic hierarchy.

Adaptive Strategy. Recall from Section 6, we train the
knockoff in two phases: (a) Online: during transfer set con-
struction; followed by (b) Offline: the model is retrained
using transfer set obtained thus far. In phase (a), we train
F4 with SGD (with 0.5 momentum) with a learning rate of
0.0005 and batch size of 4 (i.e., 4 images sampled at each
t). In phase (b), we train the knockoff F'4 from scratch on
the transfer set using SGD (with 0.5 momentum) for 100
epochs with learning rate of 0.01 decayed by a factor of 0.1
every 60 epochs. We used A=25.

C. Extensions of Existing Results

In this section, we present extensions of existing results
discussed in the main paper.

C.1. Qualitative Results

Qualitative results to supplement Figure 6 are provided
in Figures Each row in the figures correspond to
an output class of the blackbox whose images the knockoff
has never encountered before. Images in the “transfer set”
column were randomly sampled from ILSVRC [4}|12]. In
contrast, images in the “test set” belong to the victim’s test
set (Caltech256, CUBS-200-2011, etc.).

C.2. Sample Efficiency: Training Knockoffs on GT

We extend Figure 5 in the main paper to include training
on the same ground-truth data used to train the blackboxes.
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Figure S4: Qualitative results: Caltech256. Extends Figure 6 in the main paper. GT labels are underlined, correct knockoft top-1
predictions in green and incorrect in red.
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Figure S5: Qualitative results: CUBS200. Extends Figure 6 in the main paper.
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Figure S6: Qualitative results: Indoor67. Extends Figure 6 in the main paper. GT labels are underlined, correct top-1 knockoff

predictions in green and incorrect in red.
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Figure S7: Qualitative results: Diabetic5. Extends Figure 6 in the main paper.
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Figure S8: Policies learnt by adaptive strategy. Supplements Figure 7 in the main paper.

This extension “Py (Fy)” is illustrated in Figure dis-
played alongside KD approach. The figure represents the
sample-efficiency of the first two rows of Table 2. Here
we observe: (i) comparable performance in all but one case
(Diabetich, discussed shortly) indicating KD is an effec-
tive approach to train knockoffs; (ii) we find KD achieve

better performance in Caltech256 and Diabetich due to
regularizing effect of training on soft-labels [6] on an im-
balanced dataset.
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C.3. Policies learnt by Adaptive

We inspected the policy 7 learnt by the adaptive strat-
egy in Section 6.1. In this section, we provide policies over
all blackboxes in the closed- and open-world setting. Fig-
ures[S8aland [S8c|display probabilities of each action z € Z
at t = 2500.

Since the distribution of rewards is non-stationary, we
visualize the policy over time in Figure [S8b] for CUBS200
in a closed-world setup. From this figure, we observe an
evolution where: (i) at early stages (¢ € [0,2000]), the
approach samples (without replacement) images that over-
laps with the victim’s train data; and (ii) at later stages
(t € [2000, 4000)), since the overlapping images have been
exhausted, the approach explores related images from other
datasets e.g., “ostrich”, “jaguar”.

C.4. Reward Ablation

The reward ablation experiment (Figure 8 in the main
paper) for the remaining datasets are provided in Figure
‘We make similar observations as before for Indoor67.
However, since Fy, = Diabeticb demonstrates confident
predictions in all images, we find little-to-no improvement
for knockoffs of this victim model.

D. Auxiliary Experiments

In this section, we present experiments to supplement
existing results in the main paper.

D.1. Effect of CNN Initialization

In our experiments (Section 6), the victim and knockoff
models are initialized with ImageNet pretrained Weightﬂ a
de facto when training CNNs with a limited amount of data.
In this section, we study influence of different initializations
of the victim and adversary models.

To achieve reasonable performance in our limited data
setting, we perform the following experiments on compar-
atively smaller models and datasets. We choose three vic-
tim blackboxes (all trained after random initialization) using
the following datasets: MNIST [9], CIFAR10 [7]], and CI-
FAR100 [7]]. We train a LeNet-like modeﬂ for MNIST, and
Resnet-18 models for CIFAR-10 and CIFAR-100.

While we use the same blackbox model architecture for
the knockoff, we either randomly initialize them or pre-
train them on a different task. Consequently, in the fol-
lowing experiments, both the victim and knockoff have
different initializations. We repeat our experiment us-
ing random policy (Section 4.1.1) and using as the query
set P4: (a) when Py=MNIST: EMNIST [3|] (superset
of MNIST containing alpha numeric characters [A-Z, a-
z, 0-9]), EMNISTLetters ([A-Z, a-z]), FashionMNIST [[15]]
(fashion items spanning 10 classes e.g., trouser, coat) and
KMNIST [2] (Japanese Hiragana characters spanning 10
classes); (b) when Py, =CIFAR10: CIFAR100 [7] and Tiny-
ImageNetZO(ﬂ (subset of ImageNet with 500 images per
each of 200 classes); and (c)when Py,=CIFAR100: CI-
FAR10 and TinyImageNet200. Note that the output classes
between CIFAR10 and CIFAR100 are disjoint.

From Figure [S3] we observe: (i) model stealing is pos-
sible even when the knockoffs are randomly initialized.
For instance, when stealing MNIST, we recover 0.98x
victim accuracy across all choices of Py4; (ii) pretrain-
ing the knockoff model — even on a different task — im-
proves sample efficiency of model stealing attacks e.g.,
when Fy =CIFARI10-resnetl8, querying images from Py
improves the knockoff accuracy after 50k queries from
46.5% to 78.9%.

D.2. Seen and Unseen classes

We now discuss evaluation to supplement Section 5.2.1
and Section 6.1.

In Section 6.1, we highlighted strong performance of the
knockoff even among classes that were never encountered
(see Table [ST] for exact numbers) during training. To elab-
orate, we split the blackbox output classes into “seen” and
“unseen” categories and present mean per-class accuracies
in Figure [ST0] Although we find better performance on

! Alternatives for ImageNet pretrained models across a wide range of
architectures were not available at the time of writing

“https://github.com/pytorch/examples/blob/master/
mnist/main.py

Shttps://tiny-imagenet.herokuapp.com/
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Figure S12: Semi-open world: 74 and 7.

classes seen while training the knockoff, performance of un-
seen classes is remarkably high, with the knockoff achiev-
ing >70% performance in both cases.

D.3. Adaptive: With and without hierarchy

The adaptive strategy presented in Section 4.1.2 uses
a hierarchy discussed in Section 5.2.2. As a result, we ap-
proached this as a hierarchical multi-armed bandit problem.
Now, we present an alternate approach adaptive-flat,
without the hierarchy. This is simply a multi-armed bandit
problem with |Z| arms (actions).

Figure [STI] illustrates the performance of these ap-
proaches using Py = D? (|Z] = 2129) and rewards
{certainty, diversity, loss}. We observe adaptive con-
sistently outperforms adaptive-flat. For instance, in
CUBS200, adaptive is 2x more sample-efficient to reach
accuracy of 50%. We find the hierarchy helps the adversary
(agent) better navigate the large action space.

D.4. Semi-open World

The closed-world experiments (P4 = D?) presented in
Section 6.1 and discussed in Section 5.2.1 assumed access
to the image universe. Thereby, the overlap between P4 and
Py was 100%. Now, we present an intermediate overlap
scenario semi-open world by parameterizing the overlap
as: (i) 74: The overlap between images P4 and Py is 100 x
74; and (ii) 7x: The overlap between labels K and Z is 100 x
7k. In both these cases 74, 7k € (0, 1] represents the fraction
of P4 used. 7g = 7x = 1 depicts the closed-world scenario
discussed in Section 6.1.

From Figure [ST2] we observe: (i) the random strategy
is unaffected in the semi-open world scenario, displaying
comparable performance for all values of 74 and 7i; (ii) 74:
knockoff obtained using adaptive obtains strong perfor-
mance even with low overlap e.g., a difference of at most
3% performance in Caltech256 even at 7y = 0.1; (iii)
7x: although the adaptive strategy is minimally affected
in few cases (e.g., CUBS200), we find the performance drop



due to a pure exploitation (certainty) that is used. We ob-
served recovery in performance by using all rewards indi-
cating exploration goals (diversity, loss) are necessary when
transitioning to an open-world scenario.

References

(1]

(2]

(3]

[4]

(5]
(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

Eyepacs. https://wuw.kaggle.com/c/
diabetic-retinopathy-detection. Accessed: 2018-
11-08. 1]

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto,
Alex Lamb, Kazuaki Yamamoto, and David Ha. Deep learn-
ing for classical japanese literature, 2018.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André
van Schaik. Emnist: an extension of mnist to handwritten
letters. arXiv preprint arXiv:1702.05373, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. [3]

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256
object category dataset. 2007. [I]

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. arXiv:1503.02531, 2015. [f]
Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Tom Duerig, et al. The open images
dataset v4: Unified image classification, object detection,
and visual relationship detection at scale. arXiv:1811.00982,
2018.[31

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, 2:18, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011. 3]

Ariadna Quattoni and Antonio Torralba. Recognizing indoor
scenes. In CVPR, 2009.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. 1JCV, 2015. 3]

Angelo Vittorio. Toolkit to download and visualize single
or multiple classes from the huge open images v4 dataset.
https://github.com/EscVM/0IDv4_ToolKit, 2018.
C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011.[0

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017.


https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://github.com/EscVM/OIDv4_ToolKit

