
In Defense of Pre-Trained ImageNet Architectures for Real-Time Semantic
Segmentation of Road-driving Images - Supplementary

1. Lighter upsampling
As mentioned in the paper, we have experimented by

replacing the 3×3 convolution of the upsampling module
using a variety of lighter alternatives. Here we show our
results using the following variants: grouped convolution,
depthwise separable convolution, inverted residual block,
1×1 convolution. We replaced the 3×3 convolution in
the upsampling module and kept the rest of the model and
training specification the same. Results are reported in Ta-
ble 1. ResNet-18 was used as the model encoder. All of
the models were trained on Cityscapes train subset. mIoU
is measured on Cityscapes val. The input image size is
2048×1024. The number of floating point operations is
shown for the same input size. Also, the total number of
randomly initialized parameters is reported (all parameters
not trained on ImageNet). For comparison, when using
a 3×3 convolutions in the upsampling, the total number
of randomly initialized parameters is 636 thousand at 104
GFLOPs.

Method mIoU GFLOPs params
grouped conv (8 groups) 75.73 84.1 252K
depthwise separable 73.76 84.0 250K
inverted residual 74.87 92.7 405K
1×1 conv 74.18 83.8 247K
3×3 conv 75.35 104 636K

Table 1. Evaluation of convolution alternatives in the upsampling
path of a model with a ResNet-18 encoder. The GFLOPs column
shows the number of floating point operations when the input im-
age is full Cityscapes resolution, i.e. 2048×1024. The params
column displays the number of parameters in the decoder path
(without ImageNet pre-trained parameters).

On CamVid, we used the MobileNet V2 encoder to see
the effect of using lighter convolution alternatives. Table 2
shows effects of using lighter convolution alternatives in
combination with the MobileNet V2 encoder. The models
were trained on CamVid train subset and the reported results
are on CamVid val subset. In these experiments we wit-
nessed drops in accuracy for all methods except for grouped
convolution. However, we chose not to use grouped convo-
lution instead of 3×3 convolutions in the upsampling path
as the full 3×3 convolution yields faster inference time de-

spite having more GFLOPs. This is due to 3×3 convolution
having more optimized library support inside cuDNN.

Method mIoU GFLOPs params
grouped conv(8 groups) 72.83 5.9 180K
depthwise separable 71.13 5.8 178K
inverted residual 71.98 8.6 332K
1×1 conv 71.69 5.7 174K
3×3 conv 72.05 13.1 567K

Table 2. Evaluation of convolution alternatives in the upsampling
path of a model with MobileNet V2 encoder. The GFLOPs col-
umn shows the number of floating point operations when the input
image is full CamVid resolution, i.e. 960×720. params column
displays the number of parameters in the decoder path (without
ImageNet pre-trained parameters).

2. Profiling on the Jetson TX2
Nearest neighbour upsampling. We have found out

that PyTorch models with bilinear interpolation can not be
implemented on the Jetson TX2 SoC due to exhaustion of
CUDA cores. Instead, we had to use nearest neighbour in-
terpolation. To see the effect of replacing the bilinear in-
terpolation using nearest neighbour, we trained the single
scale model with the aforementioned change in the upsam-
pling path. Using nearest neighbour, we measured a drop
from 75.35% to 73.69% mIoU. Both models were trained
on Cityscapes train and the reported accuracy is measured
on Cityscapes val.

Half precision. Jetson TX2 SoC supports half precision
floating point operations. These may be beneficial for de-
creasing the memory throughput as well as raising infer-
ence speed. We measured the impact of using 16 bit pre-
cision on segmentation accuracy and witnessed drops of
around 0.01% for various trained models. We also stud-
ied the effect of using half precision accuracy on inference
speed. Compared to using 32 bit floating point arithmetic,
we measured a speed-up for both ResNet-18 and MobileNet
V2 backbones. These speed-ups were spanning from 10 to
15%. All our experiments were performed under CUDA
9.0, CUDNN 7.1, and PyTorch v1.0rc1. We expect that ex-
pressing our models in TensorRT would result in greater
speed-ups. We visualize differences in inference speeds in



Figure 1 for the ResNet-18 backbone, and in Figure 2 for
the MobileNet V2 backbone.

Runtime measurements. We report measured inference
speed for all methods used in the paper. This means us-
ing MobileNet V2 and ResNet-18 as encoders and single
scale and pyramid decoders. Reported inference speeds are
shown in Figure 3.

Figure 1. Comparison of inference speeds on the Jetson TX2. The
same model, ResNet-18 single scale model, was ran using 32 and
16 bit floating point precision.

Figure 2. Comparison of inference speeds on the Jetson TX2. The
same model, MobileNet V2 single scale model, was ran using 32
and 16 bit floating point precision.

Figure 3. Inference speed of both pyramid and single scale meth-
ods for ResNet-18 and MobileNet V2 backbones. Reported FPS
are measured using single precision floating point arithmetic.

3. Additional ablation and validation
Benefits of SPP To demonstrate the importance of SPP,
we train a single scale model without it, which is very
similar to FPN. That model achieves 71.47% mIoU on
Cityscapes val, a 4 percent point drop compared to our sin-
gle scale model with SPP.

Impact of ImageNet init Table 3 presents ablation ex-
periments which explore benefits of ImageNet pre-training.
In each experiment, we use ImageNet init in one additional
residual block to find out where this regularization helps the
most.

Conv-BN 1 RB 1 RB 2 RB 3 RB 4 mIoU
68.50

3 69.21
3 3 69.98
3 3 3 71.74
3 3 3 3 73.08
3 3 3 3 3 75.35

Table 3. Impact of partial pre-training on Cityscapes val. Checked
residual blocks were initialized on ImageNet. All models were
trained through 250 epochs on Cityscapes train at full resolution.

More pyramid levels A pyramid model with 3 pyra-
mid levels achieves 74.9% mIoU on Cityscapes val mIoU,
around 0.5pp drop with respect to the 2 level pyramid.

Single scale vs pyramid To find differences between sin-
gle scale and pyramid models, we measure segmentation
accuracy with respect to stereoscopic disparity. Although
the pyramid and single scale model perform the same on
Cityscapes val, we find that on 5% of closest pixels, the
pyramid model is 1.4% more accurate. On 5% of the far-
thest pixels, the pyramid model performs 3.2% worse.

Ensembling pyramid and single scale models We com-
pare the single scale SPP model with the pyramid model by
evaluating the following two ensembles on Cityscapes val:
i) one SPP model and one pyramid model, and ii) two SPP
models. Table 4 shows that most improvement over the sin-
gle SPP model is achieved with a heterogeneous ensemble.
This indicates that the two approaches learn different repre-
sentations.

models first second ensemble
SPP1 + SPP2 75.35 75.43 76.45
pyramid + SPP1 75.45 75.35 77.12
pyramid + SPP2 75.45 75.43 77.29

Table 4. Experiments of segmentation mIoU of ensembled models
on Cityscapes val. The combination of one SPP model and one
pyramid model surpasses the ensemble of two SPP models.



Summary of Cityscapes results Table 5 briefly presents
all of our Cityscapes val results for the single scale model.

backbone res IN mIoU GFLOPS FPS
RN-18 full 3

75.4 104.0 39.9
MN V2 75.3 41.0 27.7
RN-18 full 70.4 104.0 39.9
MN V2 69.4 41.0 27.7
RN-18 half 3

70.2 26.0 134.9
MN V2 70.6 10.3 95.1

Table 5. Our Cityscapes val results expressed in mIoU. res column
shows wether the input resolution is 2048× 1024(full) or 1024×
512(half). IN indicates ImageNet pre-training. GFLOPS and FPS
show the total number of floating point operations and number of
processed frames per second on GTX 1080Ti.

Multi-scale inference We demonstrate the effectiveness
of using a resolution pyramid at test time. For multi-scale
inference we employ the following approach. We create a
resolution pyramid of input images by re-scaling the origi-
nal image by the following factors [0.5, 0.75, 1.0, 1.25, 1.5].
Next, we perform forward passes on each of the images and
resize the probability maps to original resolution. The final
output tensor is an average value of all five outputs. The re-
sults from Table 6 show that both the single scale and pyra-
mid model benefit for multi-scale inference.

model mIoU mIoU4
SwiftNetRN-18 SPP 75.4 76.3
SwiftNetRN-18 pyramid 75.5 76.4

Table 6. Results on Cityscapes val with and without multi-scale
inference. mIoU 4 shows results when performing multi-scale
inference. mIoU shows results when using a single image as input.


