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In this section, we include more details on obtaining the
task correlation matrix, Γ, described in Section 3, ablation
studies with varying source tasks, as well as additional re-
sults and comparisons, which could not be included in the
main paper due to space constraints. All notations are as fol-
lowed in the main paper, unless defined separately. Please
find the references, that we will be referring here, are cited
at the “References” Section at the end of this supplementary
section.

7. More on Task Correlation
Dawid-Skene method: As mentioned in Section 3 and
Section 4, we used the well-known Dawid-Skene (DS)
method [2][10] to aggregate votes from human users to
compute the task correlation matrix Γ. We now describe
the DS method.

We assume a total of M annotators providing labels for
N items, where each label belongs to one of K classes.
DS associates each annotator m ∈ M with a K × K con-
fusion matrix Θm to measure an annotator’s performance.
The final label is a weighted sum of annotator’s decisions
based on their confusion matrices, i.e. Θms where {m =
1, · · · ,M}. Each entry of the confusion matrix θlg ∈ Θm

is the probability of predicting class g when the true class
is l. A true label of an item n ∈ N is yn and the vector y
denotes true label for all items, i.e. y = {y1, · · · , yN}. Let’s
denote ξm,n as annotator m’s label for item n, i.e. if the an-
notator labeled the item as k ∈ K, we write ξm,n = k. Let
matrix Ξ (ξm,n ∈ Ξ) denote all labels for all items given
by all annotators. The DS method computes the annotators’
error tensor C, where each entry cmlg ∈ C denotes the prob-
ability of annotator m giving label l as label g for item n.
The joint likelihood L(.) of true labels and observed labels
Ξ can hence be written as:

L(C; y,Ξ) =

N∏
j=1

M∏
m=1

K∏
g=1

(
cmyjg

)1(ξm,j=k) (6)

Maximizing the above likelihood provides us a mechanism

to aggregate the votes from the annotators. To this end,
we find the maximum likelihood estimate using Expectation
Maximization (EM) for the marginal log likelihood below:

l(C) = log(
∑
L(C; y,Ξ)) (7)

The E step is given by:

E[logL(C; y,Ξ)] =

N∏
j=1

p(yj = l|C,Ξ) log

M∏
m=1

K∏
g=1

(
cmlg

)1(ξm,j=k) (8)

The M step subsequently computes the C estimate that max-
imizes the log likelihood:

ĉmlg =

∏N
j=1 p(yj = l|C,Ξ)1(ξm,j=k)∏K

k′=1

(∏N
j=1 p(yj = l|C,Ξ)1(ξm,j=k

′ )

) (9)

p̂(yj) =

∏N
j=1 1(ξm,j=k)

N
(10)

Once we get annotators’ error tensor C and p(yj) from
Equations 9 and 10, we can estimate:

p(yj = l|C,Ξ) =
exp(

∑M
m=1

∑K
g=1 log ĉmlg1(ξm,j=k))∑K

l′=1 exp(
∑M
m=1

∑K
g=1 log ĉml′g1(ξm,j=k))

(11)
for all j ∈ N and l ∈ K. To get the final predicted label,
we adopt a winner-takes-all strategy on p(yj = l) across all
l ∈ K. We request readers to refer [10] and [2] for more
details.

Implementation: In our experiments, as mentioned be-
fore, we considered the Taskonomy dataset [8]. This dataset
has 26 vision-related tasks. We are interested in finding the
task correlation for each pair of tasks in {τ1, · · · , τ26}. Let
us assume that we have M annotators. To fit our model
in the DS framework, we flatten the task correlation matrix
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Γ26×26 (described in section 3) in row-major order to get
item set N = {n1, · · · , n(26×26)}. For each item nk ∈ N ,
the annotator is asked to give task correlation label on a
scale of {+3,+2,+1, 0,−1}. On that scale, a +3 denotes
self relation, +2 describes strong relation, +1 implies weak
relation, 0 to mention abstain and −1 to denote no relation
between two tasks τi, τj ∈ τ . After getting annotators’ vote,
we build matrix Ξ. Subsequently, we find annotators’ er-
ror tensor C (Equation 6), likelihood estimation (Equations
7, 8, 9, 10). We get predicted class labels after a winner-
takes-all in Equation 11. Predicted class labels are the task
correlation we wish to get. We get the final task correla-
tional matrix Γ26×26, after a de-flattening of ytruej for all
j = 1, · · · , N .

Annotators RANSAC[7] LR[3] G3D[9] TN[8]

3 28% 22% 29% 40%
10 51% 29% 31% 52%
20 90% 82% 92% 42%
30 88% 81% 72% 64%
35 88% 82% 75% 61%
40 90% 72% 69% 63%
45 87% 80% 61% 70%
50 90% 82% 72% 50%

Table 6: Win rates (%) of TTNet6 with a varied num-
ber of annotators. We considered the win rate (%) on an-
gular error. Columns are state-of-the-art methods and rows
are our TTNet6 trained using different Γis, where i =
{3, 10, 20, 30, 35, 40, 45, 50}.

Ablation study on different number of annotators: The
results in the main paper were performed with 30 anno-
tators. In this section, we studied the robustness of our
method when Γ is obtained by varying the number of anno-
tators, Mi, where i ∈ {3, 10, 20, 30, 35, 40, 45, 50}. Table
6 shows a win rate (%) [8] on the camera pose estimation
task using TTNet 6 (when 6 source tasks are used). While
there are variations, we identified i = 30 as the number of
annotators where the results are most robust, and used this
setting for the rest of our experiments (in the main paper).

8. Ablation Studies on Varying Known Tasks
In this section, we present two ablation studies w.r.t.

known tasks, viz, (i) number of known tasks and (ii) choice
of known tasks. These studies attempt to answer the ques-
tions: how many known tasks are sufficient to adapt to zero-
shot tasks in the considered setting? Which known tasks
are more favorable to transfer to zero-shot tasks? While an
exhaustive study is infeasible, we attempt to answer these
questions by conducting a study across six different mod-
els: TTNet4, TTNet6, TTNet10, TTNet15, TTNet18, and
TTNet20 (where the subscript denotes the number of source
tasks considered). We used win rate (%) against [8] for
each of the zero-shot tasks. Table 7 shows the results of our

studies with varying number and choice of known source
tasks. Expectedly, a higher number of known tasks provides
improved performance. It is observed from the table that
our methodology is fairly robust despite changes in choice
of source tasks, and that TTNet6 provides a good balance
by having a good performance even with a low number of
source tasks. Interestingly, most of the source tasks consid-
ered for TTNet6 (autoencoding, denoising, 2D edges, oc-
clusion edges, vanishing point, and colorization) are tasks
that do not require significant annotation, thus providing a
model where very little source annotation can help general-
ize to more complex target tasks on the same domain.

9. Other Results
In this section, we will discuss different results that we

did not cover due the page constraint in the main paper.

9.1. Qualitative Results on Cityscapes Dataset

To further study the generalizability of our models,
we finetuned TTNet on the Cityscapes dataset [1]. We
get source task model parameters (trained on Taskonomy
dataset) to train TTNet6. We then finetuned TTNet6 on the
segmentation model parameters trained on Cityscapes data.
(We modified one source task, i.e. autoencoding to seg-
mentation, of our proposed TTNet 6, see table 7, 3rd row.
All other source tasks are unaltered.) Results of the learned
model parameters for four zero-shot tasks, i.e. Surface nor-
mal, depth, 2D edge and 3D keypoint, are reported in Fig-
ure 7, with comparison to [8] (which is trained explicitly for
these tasks). Despite the lack of supervised learning, the fig-
ure shows that tt is evident from the qualitative assessment
(figure 7) that our model seems to capture more detail.

9.2. More Qualitative Results

We report more qualitative results of: (i) room layout in
Figure 8; (ii) surface normal estimation in Figure 9; (iii)
depth estimation in Figure 10; and (iv) camera pose estima-
tion in Figure 11.

9.3. Zero-shot to Known Task Transfer: Quantita-
tive Evaluation

In continuation to our discussions in Section 5, we ask
ourselves the question: are our regressed model parameters
for zero-shot tasks capable of transferring to a known task?
To study this, we consider the autoencoder-decoder param-
eters for a zero-shot task learned through our methodology,
and finetune the decoder (fixing the encoder parameters) to
a target known task, following the procedure in [8]. Table
8 shows the quantitative results when choosing the source
(zero-shot) tasks as surface normal estimation (N) and room
layout estimation (L). We compared our TTNet against [8]
quantitatively by studying the win rate (%) of the two meth-
ods against other state-of-the-art methods: Wang et al. [6],
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4
3 7 7 7 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 7 79% 62% 71% 71%
3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 3 3 71% 58% 61% 59%
3 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 3 75% 79% 79% 52%

6
3 7 7 7 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 7 3 88% 85% 87% 89%
3 7 3 7 7 7 7 7 7 7 3 7 7 3 7 7 7 7 7 7 7 3 7 7 3 87% 86% 86% 89%
3 3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 3 7 85% 88% 86% 82%

10
3 3 3 3 3 7 7 7 7 3 7 7 7 3 7 7 7 7 7 7 7 7 3 3 3 85% 84% 87% 85%
3 3 7 3 3 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 3 3 3 3 3 87% 88% 91% 92%
3 3 3 3 3 7 7 3 7 7 7 7 7 3 7 7 7 7 7 3 3 7 7 7 3 88% 83% 81% 89%

15 3 3 3 3 3 3 3 3 7 7 3 7 7 7 7 7 7 7 7 3 3 3 3 3 3 88% 85% 91% 93%
3 7 7 3 3 3 7 3 7 7 7 3 3 3 7 7 7 7 3 3 3 3 3 3 3 89% 87% 81% 85%

18 3 3 3 3 3 3 7 3 7 7 3 3 3 3 7 3 7 7 3 7 3 3 3 3 3 93% 91% 97% 91%
3 7 3 3 3 3 7 3 7 3 7 3 3 3 7 3 7 7 3 3 3 3 3 3 3 95% 91% 93% 94%

20 3 7 3 3 3 3 3 3 7 3 3 3 3 3 7 3 7 7 3 3 3 3 3 3 3 94% 91% 93% 89%

Table 7: Ablation study of different TTNets with different combination of source tasks. Row numerals, i.e. 4, 6, 10, 15, 18 and 20,
indicate the number of source tasks that have been considered to train the model. A blue box (with 3) indicates a source task. The last four
columns indicate win rates (%) for each of the 4 zero-shot tasks considered against [8]. We observe that our methodology is fairly robust
and that TTNet6 gives a fairly good performance even with a low number of source tasks.

Figure 7: Results on Cityscapes data. We finetuned TTNet6 on the Cityscapes dataset [1], and the surface normal, depth, 2D edge and
3D keypoint results are reported using the model parameters learned by TTNet6.

G3D [9], and full supervision. However, it is worthy to
mention that our parameters are obtained through the pro-
posed zero-shot task transfer, while all other comparative
methods are explicitly trained on the dataset for the task.

9.4. Alternate Methods for Task Correlation Com-
putation

In our results so far, we studied the effectiveness of com-
puting the task correlation matrix by aggregation of crowd
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Figure 8: More results of room layout estimation

Figure 9: More results of surface normal estimation

votes. In this section, we instead use the task graph ob-
tained in [8] to obtain the task correlation matrix Γ. We call
this matrix ΓTN . Figure 12 shows a qualitative comparison
of TTNet6 where the ΓTN is obtained from the taskonomy
graph, and Γ is based on crowd knowledge. It is evident that

our method shows promising results on both cases.

It is worthy to note that although one can use the taskon-
omy graph to build Γ: (i) the taskonomy graph is model and
data specific [8]; while Γ coming from crowd votes does
not explicitly assume any model or data and can be easily
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Figure 10: More results of depth estimation

Figure 11: More results of camera pose estimation

obtained; (ii) during the process of building the taskonomy
graph, an explicit access to zero-shot task ground truth is
unavoidable; while, constructing Γ from crowd votes is pos-
sible without accessing any explicit ground truth.

9.5. Evolution of TTNet
Thus far, we showed the final results of our meta-learner

after the model is fully trained. We now ask the question -
how does the training of the TTNet model progress over
training? We used the zero-shot task model parameters

from TTNet6 during its course of training, and Figure 13
shows qualitative results of different epochs of four zero-
shot tasks over the training phase. The results show that
the model’s training progresses gradually over the epochs,
and the model obtains promising results in later epochs. For
example, in Figure 13(a), finer details such as wall bound-
aries, sofa, chair and other minute details are learned in later
epochs.
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Model
TTNet6 Taskonomy
Wang Zamir Full Sup Wang Zamir Full Sup
N L N L N L N L N L N L

Depth 85 87 81 97 67 42 98 85 92 88 60 46
2.5 D 88 75 75 81 89 35 88 77 73 88 85 39
Curvature 84 87 91 58 86 47 78 89 88 78 60 50

Table 8: Zero-shot to known task transfer. We consider
the autoencoder-decoder parameters for a zero-shot task learned
through our method, and finetune the decoder (fixing the encoder)
to a target known task, following the procedure in [8]. Source tasks
(zero-shot) are surface normal (N), and, room layout (L). Target
tasks are depth, 2.5D segmentation and curvature. Win rates (%)
of task transfer with respect to self-supervised methods, such as,
Wang et al. [5], Zamir et al. [9] as well as fully supervised setting
are shown (all values are in %), with bold face numerals denoting
winning entries.

Figure 12: Qualitative results of TTNet6 when task correla-
tion matrix (Γ) is obtained from task graph computed in [8].
We studied considering the task graph computed in [8] (instead of
crowd vote) to build the task correlation matrix ΓTN . First column
represents RGB image and, subsequent columns (from 2nd to 4th

columns) are zero-shot tasks: curvature, vanishing points, 2D key
point and surface normal estimation

9.6. Analyzing Importance of Known Tasks
One can use the latent task basis to estimate this. We

followed GO-MTL [4] to compute the task basis. Optimal
model parameters of known tasks are mapped to a low-dim
vector space R using an autoencoder, before applying GO-
MTL. We used ResNet-18 for encoder-decoder, dim of R
as 100, and dim of basis as 8. More specifically, optimal
model parameters of each known task are mapped to a low-
dimensional space R, i.e. S : Θτi → Ri. S(.) is an
autoencoder trained on model parameters of known tasks
{Θ∗τ1 , · · · ,Θ∗τm}, i.e. minJ

∑m
i=1 ||S(Θτi ; J) − Θ∗τi ||

2 +
λ
∑

(x,y)∈(Xτi ,yτi )
L
(
DΘ̃Dτi

(EΘ̃Eτi (x)), y
)

(similar to Eqn
5, main paper). S(.) infers latent representation Rzero for
regressed model parameter of zero-shot task Θτzero . We
used ResNet-18 both for encoder-decoder, dimension of R
as 100, and the dimension of task basis as 8. We can then

Figure 13: Zero-shot tasks results during the training of
TTNet. We regressed zero-shot task parameters from TTNet6 dur-
ing its course of training. The qualitative results show the gradual
learning of the model parameters of the epochs.

have task matrix W100X26 = L100X8S8X26, comprised of
all Ri and Rzero.

9.7. Comparison against random baseline

A comparison of Win rates (in %) of TTNet over random
baseline (against Taskonomy) on 1K samples is shown in
Figure 14. TTNet outperforms the baseline by a significant
amount.

Auto(100/12) Cur(92/14) Den(88/12) 2DEg(99/24) Oclu.Eg(94/6) 2DKey(94/13) 3Dkey(89/14)
Resd(99/15) Z-dpth(92/9) Dis(91/6.) Nrml(95/8) Egom(96/6) VanPts(91/11) 2DSg(95/14)
2.5 Sg(87/14) SemSeg(82/9) Jigsw(84/6) Layot(82/15) ObjCls(92/10) Matchng(97/8) ScnCls(89/18)
Camera Pose (fxd)  (78/3) Camra Ps(non fxd)(70/2) In-Ptng(86/4) Clriztn(96/21) Clsficatn(86/9)
Figure 14: Winrate (in %) of comparison of TTNet and Taskon-
omy against a random baseline
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