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In this supplementary material, we provide additional infor-
mation regarding our method’s implementation, more de-
tails and more ablation studies on important components of
the proposed framework.

1. Framework Details

We detail here the choices of various parameters to aid in
reproducing results.

1.1. Calibration Image Selector - Params

In Figure 1 we show some example outputs of the calibra-
tion selector module. Note how the module selects the cal-
ibration image that most closely matches the viewpoint the
person is seen from, based on the target pose. For Eq. 5 we
empirically select ωhead = 5, ωtorso = 3, and ωsim = 1 so as
to weigh the head and torso components of the score high-
est, then factor in the transformation scores of the limbs.

1.2. Calibration Image Warper

Keypoint grouping: We detect 17 keypoints and group them
into into 10 body parts. The body parts consist of 1) head 2)
body 3) left upper arm 4) right upper arm 5) left lower arm
6) right lower arm 7) left upper leg 8) right upper leg 9) left
lower leg, and 10) right lower leg. The head keypoints con-
sist of the nose, left/right eyes, and left/right ears. The body
keypoints consist of the left/right shoulder, and left/right hip
keypoints. Each limb consists of two keypoints; the shoul-
der and elbow for the upper arms, the elbow and wrist for
the lower arms, the hip and knee for the upper legs, and the
knee and ankle for the lower legs.

Network architecture: Our U-Net architecture consists of 5
encoder blocks followed by 5 decoder blocks. Each encoder
block downsamples the input by a factor of 2 and consists of
2 convolutional layers; the first with a kernel size of 3 and
stride 1 and the second with a kernel size of 4 and stride 2.
Each decoder block consists of a bilinear upsampling layer

Figure 1. Examples of selected calibration images. The closest
viewpoint to the target is selected.

that upsamples the input by a factor of 2, followed by a con-
volutional layer with kernel size 3 and stride 1. The encoder
blocks use 64 filters for the first block followed by 128 fil-
ters for the remaining 4 blocks. The decoder blocks use
128 filters for the first 4 convolutional layers and 32 filters
for the final block. Additionally, we add skip connections
from the encoder to the decoder in the form of concatena-
tion of feature maps of matching size. Leaky ReLu acti-
vations (with alpha = 0.2) are used for all convolutional
layers.
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Figure 2. The final Neural Blender module takes the output RGB
and mask of the calibration warper module, as well as the warped
RGB, normals, and viewpoint confidence from the re-rendering
module, and learns how to blend them into the final output RGB.

The calibration image warper module adds a final convo-
lutional layer with 4 channels to produce the RGB output
Iwarp, and the mask I•warp. Tanh activation is used for the
RGB and sigmoid for the mask prediction.

1.3. Neural Blender

The neural blender module is shown in Figure 2. For sim-
plicity we re-use the same U-Net architecture described in
the calibration image warper module section above. How-
ever, the last convolutional layer now outputs only 3 chan-
nels for the final blended RGB.

1.4. Training Details

Our networks are implemented in Tensorflow and trained
in parallel on 16 NVIDIA V100 GPUs each with 16 GB
of memory. We use the Adam optimizer [1] with a learn-
ing rate of 1−5 for the generator and 1−6 for the discrimi-
nator. We perform light data augmentation during training
with random cropping in a size range of 0.85 to 1. times
of the input image size. Additionally, we add standard `2
loss regularization (with weight 1−5) to the weights of the
network. We found that our data augmentation and regu-
larization, coupled with the variations introduced via using
all possible combinations of source and target cameras in
our training set, were sufficient to prevent over-fitting and
make our network generalize to unseen poses, viewpoints
and people.

2. Running time of the system

The proposed architecture has an end-to-end runtime of
104.3ms on a Titan V GPU. Note that, this is the unopti-
mized runtime and does not take advantage of float16 in-
ference or tensor cores on the volta architectures. We leave
achieving realtime inference using the proposed architec-
ture for future work.

Figure 3. Examples of the warped foreground mask and refined
foreground mask, compared to the ground truth mask.

Figure 4. Effect of the number of calibration images in the pool on
the output of the calibration image warper module.

3. Additional Evaluation

In Figure 3 we show some examples of the predicted warped
part masks and refined masks compared to the ground truth
foreground mask. Note that the warped part mask is limited
in the accuracy of the silhouette it can produce due to the
assumption of 2D similarity transformation between body
parts, however, the predicted refined mask is able to over-
come these limitations and produce a much cleaner silhou-
ette.

In Figure 4 we show the effect of adding more images to the
calibration image pool on the output of the calibration warp-
ing module. All calibration images are chosen at random
from a held out sequence of the user. Notice how the quality
of the output improves as the number of calibration images
increases from 6 to 210. This is due to the higher probabil-



Figure 5. Additional results showing various stages of the pipeline.

Figure 6. Additional results showing the viewpoint generalization
of the proposed method.

ity of finding a calibration image with matching viewpoint
as we increase the size of the image pool.

In Figure 5 we present additional results showing the out-
put of various stages of the proposed pipeline on seen and
unseen subjects.

In Figure 6 we present additional results showing the ability
of the proposed method to generalize to viewpoints not in
the training data.

4. Limitations and Future Work

One of the limitations of the proposed approach is that the
calibration warper produces blurry results when the view-
point of the selected calibration image is far from the target

viewpoint. We notice this in results when the calibration
image pool is small as shown in Figure 4. A larger cali-
bration pool or a predefined calibration sequence where the
user turns around the camera can help alleviate this issue.
Another limitation of the system is that it struggles to pro-
duce reasonable outputs where keypoints are not present,
for example hands. We hypothesize that adding additional
finger keypoints like fingers and more facial keypoints can
help both the calibration selection module, as well as the
hallucination modules, to produce better results. Finally,
the system shows some temporal flickering as can be seen
in the supplementary video. This is especially evident when
the selected calibration image changes, and likely can be al-
leviated via temporal architectures like RNNs or temporal
coherency losses.
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