
A. Supplementary material
A.1. Dilated convolutions and information flow

Dilated convolutions are a particular form of convolu-
tion with a sparse structure, whose kernel points are spaced
uniformly and filled with zeros in between. For instance,
the discrete filter h = [1 2 3] (where 2 is the center)
becomes [1 0 2 0 3] with dilation factor D = 2, and
[1 0 0 2 0 0 3] with D = 3. This particular structure
enables optimized implementations that skip computations
over zero points.

Consider a discrete convolution of two signals f (of
length N) and h (zero-centered, of length 2M + 1), which
can be computed as

(f ∗ h)[n] =
M∑

m=−M

f [n−m]h[m] (2)

Instead of spacing the kernel explicitly and applying a reg-
ular convolution, a dilated convolution can be computed as

(f ∗ hD)[n] =

M∑
m=−M

f [D(n−m)]h[m] (3)

yielding roughly the same computational cost as regular
convolutions for the same number of non-zero entries, while
increasing the receptive field.

For illustration purposes, in Figure 6 we depict the infor-
mation flow in our models. We also highlight the difference
between symmetric convolutions and causal convolutions.

(a) Symmetric convolutions.

(b) Causal convolutions.

Figure 6: Information flow in our models, from input (bot-
tom layer) to output (top layer). Dashed lines represent
skip-connections.

A.2. Computational cost analysis

In this section we show how we computed the compu-
tational complexity of our model and that of [16]. The
common practice is to consider only matrix multiplications,
as other operations (e.g. biases, batch normalization, ac-
tivations) have negligible impact on the final complexity.
For [16], we evaluated its reference implementation in Ten-
sorFlow. We computed the amortized cost to predict one
frame using the TensorFlow profiler, and only counted op-
erations corresponding to matrix multiplications. Accord-
ing to TensorFlow’s approximation, multiplying a N ×M
matrix by a M × K matrix has a cost of 2NMK FLOPs
(floating-point operations), which is equivalent to NMK
multiply-add operations.

For our model, we adopted the same convention. We
provide a sample cost analysis for a model with a recep-
tive field of 27 frames, which consists of 2 residual blocks.
Since the matrix multiplications in our model are only due
to convolutions, the analysis is straightforward and can be
computed by hand.

0.
20

9
M

FL
O

Ps

6.
29

1
M

FL
O

Ps

2.
09

7
M

FL
O

Ps

0.
10

4
M

FL
O

Ps

6.
29

1
M

FL
O

Ps

2.
09

7
M

FL
O

Ps

Figure 7: Architecture of a model with a receptive field of
27 frames, with the corresponding amortized cost to predict
one frame in convolutional layers.

As can be seen in Figure 7, the model consists of 6 con-
volutional layers. Disregarding padding (i.e. for sequences
of length N � 0), performing a 1D convolution with Cin

input channels, Cout output channels, and width W has a
cost of 2N W Cin Cout FLOPs, i.e. 2W Cin Cout FLOPs
per frame. In our 27-frame model, the results can be sum-
marized as follows:

1. W = 3, channels 17 · 2→ 1024, cost 0.209 MFLOPs.

2. W = 3, channels 1024→ 1024, cost 6.291 MFLOPs.

3. W = 1, channels 1024→ 1024, cost 2.097 MFLOPs.

4. W = 3, channels 1024→ 1024, cost 6.291 MFLOPs.

5. W = 1, channels 1024→ 1024, cost 2.097 MFLOPs.

6. W = 1, channels 1024→ 17 · 3, cost 0.104 MFLOPs.

Total: 17.089 MFLOPs per frame.

A.3. Ablation of receptive field and channel size

In Figure 8b we report the test error for different recep-
tive fields, namely 1, 9, 27, 82, and 243 frames. To this end,

512 1024 1536 2048
Channel size

48

51

54

57

60

M
PJ

PE
 (m

m
)

62

54.1

50.1 48.8 48.6

(a)

1 51 101 151 201 251
Receptive field (frames)

47

48

49

50

51

M
PJ

PE
 (m

m
)

51.7

49.8

48.8

47.7
47.1

(b)

Figure 8: Top: Error as a function of the channel size, with
a fixed receptive field of 27 frames. Bottom: Error as a
function of the receptive field, with a fixed channel size of
1024. Fine-tuned CPN detections for both experiments.

we stack a varying number of residual blocks, each of which
multiplies the receptive field by 3. In the single-frame sce-
nario, we use 2 blocks and set the convolution widths of
all layers to 1, obtaining a model functionally equivalent
to [34]. As can be seen, the model does not seem to over-
fit as the receptive field increases. On the other hand, the
error tends to saturate quickly, suggesting that the task of
3D human pose estimation does not require modeling long-
term dependencies. Therefore, we generally adopt a recep-
tive field of 243 frames. Similarly, in Figure 8a we vary the
channel size between 128 and 2048, with the same findings:
the model is not prone to overfitting, but the error saturates
past a certain point. Since the computational complexity in-
creases quadratically with respect to the channel size, we
adopt C = 1024.

A.4. Data augmentation and convolution type

When we remove test-time augmentation, the error in-
creases to 47.7 mm (from 46.8 mm) in our top-performing
model. If we also remove train-time augmentation, the error
reaches 49.2 mm (another +1.5 mm).

Next, we replace dilated convolutions with regular dense

convolutions. In a model with a receptive field of 27 frames
and fine-tuned CPN detections, the error increases from
48.8 mm to 50.4 mm (+1.6 mm), while also increasing
the number of parameters and computations by a factor of
≈ 3.5. This highlights that dilated convolutions are crucial
for efficiency, and that they counteract overfitting.

A.5. Batching strategy

We argue that the reconstruction error is strongly depen-
dent on how the model is trained, and we suggested to gen-
erate minibatches in a way that only one output frame at a
time is predicted. To show why this is important, we intro-
duce a new hyperparameter – the chunk sizeC (or step size),
which specifies how many frames are predicted at once per
sample. Predicting only one frame, i.e. C = 1, requires
a full receptive field F as input. Predicting two frames
(C = 2) requires F + 1 frames, and so on. It is evident
that predicting multiple frames is computationally more ef-
ficient, as the results of intermediate convolutions can be
shared among frames – and in fact, we do this at inference.
On the other hand, we show that during training this is detri-
mental to generalization.

Figure 9b illustrates the reconstruction error (as well as
the relative speedup in training time) when training a 27-
frame model with different step sizes, namely 1, 2, 4, 8, 16,
and 32 frames. Since predicting multiple frames is equiv-
alent to increasing the batch size – thus hurting generaliza-
tion [25] – we make the results comparable by adjusting the
batch size so that the model always predicts 1024 frames.
Therefore, the 1-frame experiment adopts a batch size of
1024 sequences, which becomes 512 for 2 frames, 256 for
4 frames, and so on. This methodology also ensures the
models will be trained with the same number of weight up-
dates.

The results show that the error decreases in conjunction
with the step size, at the expense of training speed. The
impaired performance of the models trained with high step
size is caused by correlated batch statistics [14]. Our im-
plementation optimized for single-frame outputs achieves a
speed-up factor of≈ 2, but this gain is even higher on mod-
els with larger receptive fields (e.g. ≈ 4 with 81 frames),
and enabled us to train the model with 243 frames.

A.6. Optimized training implementation

Figure 10 shows why our implementation tailored for
single-frame predictions is important. A regular implemen-
tation computes intermediate states layer by layer. This is
very efficient for long sequences, as the states computed in
layer n can be reused by layer n + 1 without recomputing
them. However, for short sequences, this approach becomes
inefficient because states near boundaries are not used. In
the extreme case of single-frame predictions (which we use
for training), many intermediate computations are wasted,

1 2 3 4 5 6 7 711 7

1 2 311

1 2 3 41

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 7

5 6 7 7 7

(a)

0 5 10 15 20 25 30
Chunk size (frames)

49.5

50.0

50.5

51.0

51.5

Er
ro

r (
m

m
)

Error
Speed-up
Speed-up (1f)

2

4

6

8

Tr
ai

ni
ng

 s
pe

ed
-u

p

(b)

Figure 9: Top: batch creation process for training. This
example shows a video of 7 frames which is used to train
a model with a receptive field of 5 frames. We generate a
training example for each of the 7 frames, such that only
the center frame is predicted. The video is padded by repli-
cating boundary frames. Bottom: reconstruction error and
training speed-up with different step sizes. The speed-up is
relative to C = 1. The 1f variant shows the speed up corre-
sponding to the implementation optimized for single-frame
predictions.

as can be seen in Figure 10a. In this case, we replace dilated
convolutions with strided convolutions, making sure to ob-
tain a model which is functionally equivalent to the original
one (e.g. by also adapting skip-connections). This strategy
ensures that no intermediate states will be discarded.

As mentioned, at inference we use the regular layer-by-
layer implementation since it is more efficient for multi-
frame predictions.

A.7. Demo videos

The supplementary material contains several videos
highlighting the smoothness of the predictions of our tem-
poral convolutional model compared to the single frame
baseline. Specifically, we show side by side the origi-
nal video sequence, poses predicted by the single-frame
baseline, poses from the temporal convolutional model as
well as the ground-truth poses. Some demo videos can
also be found at https://dariopavllo.github.
io/VideoPose3D.

(a) Layer-by-layer implementation.

(b) Implementation optimized for single-frame predictions.

Figure 10: Comparison between two implementations for
a single-frame prediction, receptive field of 27 frames. In
the layer-by-layer implementation many intermediate states
are wasted, whereas the optimized implementation com-
putes only required states. As the length of the sequence
increases, the layer-by-layer implementation becomes more
efficient.

https://dariopavllo.github.io/VideoPose3D
https://dariopavllo.github.io/VideoPose3D

