
Representation Flow for Action Recognition
- Supplemental Materials -

AJ Piergiovanni and Michael S. Ryoo
Department of Computer Science, Indiana University, Bloomington, IN 47408

{ajpiergi,mryoo}@indiana.edu

A. Training and Implementation Details

Implementation Details When applying the representa-
tion flow layer within a CNN, we first applied a 1x1 convo-
lutional layer to reduce the number of channels from C to
32. CNN feature maps often have hundreds of channels, but
computing the representation flow for hundreds of channels
is computationally expensive. We found 32 channels to be
a good trade-off between performance and speed. The flow
layer produces output with 64 channels, x and y flows for
the 32 input channels, which are concatenated together. We
apply a 3x3 convolutional layer to this representation to pro-
duce C output channels. This allows us to apply the rest of
the standard CNN to the representation flow feature.

Two-stream networks stack 10 optical flow frames to
capture temporal information [1]. However, we found that
stacking representation flows did not perform well. Instead,
we computed the flow for sequential images and averaged
the predictions from a sequence of 16 frames. We found this
outperformed stacking flow representations.

Training Details We trained the network using stochastic
gradient descent with momentum set to 0.9. For Kinetics and
Tiny-Kinetics, the initial learning rate was 0.1 and decayed
by a factor of 10 every 50 epochs. The model was trained
for 200 epochs. The 2D CNNs were trained using a batch
size of 32 on 4 Titan X GPUs. The 3D and (2+1)D CNNs
were trained with a batch size of 24 using 8 V100 GPUs.
When fine-tuning on HMDB, the learning rate started at
0.005 and decayed by a factor of 10 every 20 epochs. The
network was fine-tuned for 50 epochs. When learning the
optical flow parameters, the learning rate for the parameters
(i.e., λ, τ, θ, divergence kernels and Sobel filters) was set
of 0.01 · lr, otherwise the model produced poor predictions.
This is likely due to the accumulation of gradients from the
many iterations of the algorithm. For Kinetics and Tiny-
Kinetics, we used dropout at 0.5 and for HMDB it was set
to 0.8.

Testing Details For the results reported in Table ??, we
classified actions by applying our model to 25 different ran-
dom croppings of each video. As found in many previous
works, this helps increase the performance slightly. In all the
other experiments (i.e., Tables ??-??), random cropping was
not used. Also notice that only the results in Table ?? uses
our full model with 32 × 224 × 224 input resolution. The
other experiments uses spatially and/or temporally smaller
models.

References
[1] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In Advances in
Neural Information Processing Systems (NIPS), pages 568–
576, 2014. 1

1


