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In the supplementary material, we provide additional in-
formation about the contrastivity and sparsity metrics, addi-
tional visualizations of explainability methods, and details
on our substructure frequency analysis.

1. Contrastivity and Sparsity Metrics
An illustration of the contrastivity and sparsity metrics

may be found in Figure 1.

2. Additional Visualizations of Explainability
Methods

More extensive visualizations comparing the explain-
ability methods may be found in Figures 2, 3 for Visual
Genome datasets Indoor vs. Outdoor and Country vs. Ur-
ban, and Figures 4, 5, 6 for molecular datasets BBBP,
BACE, and TOX21. Five random samples from each class
are shown.

3. Substructure Frequency Analysis
Connected substructures often manifest in the saliency

map of a graph obtained from an explanation method, nat-
urally yielding candidate substructures for further analysis.
We describe an automated method for counting the occur-
rence of salient substructures. In short, for each dataset,
we count the frequency of each substructure observed in
explanations. Further, we count the overall prevalence of
a substructure in a class, which defines a notion of class-
specificity.

To identify substructures, we took the connected com-
ponents induced by the set of vertices with saliency value
greater than some threshold τ ∈ [0, 1] (here, τ = 0). We
call these vertices activated. We collect the connected com-
ponents induced by the activated vertices, and count their
frequency. Counting subgraphs requires testing subgraphs

for equivalence, the implementations of which are discussed
in the following sections. We use GradCAM as the base ex-
planation method.

More formally, let G = {Gi}Ni=1 be a collection of
graphs with binary labels Y = {yi}Ni=1. For each graph
Gi = (Vi, Ei), and for every vertex vj ∈ Vi, let aj ∈ [0, 1]
be the associated saliency value. We say that a vertex vj is
activated if for threshold τ , aj ≥ τ . The set of activated
nodes for graph Gi induces a subgraph Si of Gi, possibly
unconnected. Then, we say that each connected component
cij of Si where cij has more than one node, is a subgraph
identified by the explanation method.

Let the collection of all identified subgraphs in G by
the explanation method be denoted as S. Next, define the
counts associated to each identified substructure s ∈ S as
Ns

e . Further, define Ns
p and Ns

n as the number of times a
substructure s occurs in the positively labeled data, and the
negatively labeled data respectively.

A substructure prevalent in the dataset may artificially
show high prevalence in the collection of salient subgraphs.
To account for this potential imbalance, we counted the
occurrences of explanation-identified substructures in both
positive and negative labeled data in the dataset. We used
these counts to normalize the counts obtained from the
explanations and construct three ratios: Rs

e =
Ns

e

Ns
p+Ns

n
,

Rs
p =

Ns
p

Ns
p+Ns

n
, Rs

n =
Ns

n

Ns
p+Ns

n
. The ratio Rs

e measures
the prevalence of a subgraph in explanations. The ratios
Rs

p, R
s
n measure how prevalent a substructure occurs in pos-

itively and negatively labeled data respectively, and serve as
a baseline for the first. Note that highRs

p orRs
n corresponds

to high class specificity for salient subgraph s.
These ratios are sensitive to rare substructures. For in-

stance if a substructure occurs only once in the explanations
and the dataset, then it has Rs

e = 1. To mitigate this sensi-
tivity, we report only substructures that occur more than 10
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Figure 1: Visualization of the molecule “Oprea1 495871” with molecular formula “C19H17ClN3O5S”, its corresponding
SMILES representation, and the result of applying CAM to identify atoms that contribute to its BBBP characteristic (on the
left), and the process of measuring contrastivity and sparsity of the method (i.e., CAM) for this molecule.

times in the dataset.

3.1. Visual Scene Graph Substructure Analysis

We carry above the analysis for the Visual Genome
datasets, and report top 10 findings by Rs

e for each class
in Figure 7.

We note that subgraphs with two vertices are the most
predominant in the collection, however more complicated
subgraphs exist in the saliency set.

For the indoor vs. outdoor dataset, (shelf, toiletries) is
the top result for the indoor class, and the (blue sky, clouds)
is the top result for the outdoor class.

For the country vs. urban dataset, (ground, straw) is the
top result for the country class, and (pole, traffic lights) is
the top result for the urban class.

By inspection of 7, we qualitatively confirm that the top
subgraphs are consistent with the definition of each class.
As this dataset was synthetically constructed, we do not
place much value on these findings. However, they serve as
proof-of-concept that the method returns consistent results
in the case of visual scene graphs.

3.2. Molecular Substructure Analysis

We carry above the analysis for the molecular datasets,
and report top 10 findings by Rs

e for each class in Figure 8.
In the case of molecules, subgraph analysis has a chemi-

cal interpretation in terms of functional groups that are rel-
evant for a given molecular property, e.g., toxicity.

For graph matching we utilize the functionality found in
the open source computational chemistry library RDKit.

Figure 8 shows the most prominent substructures accord-
ing to our analysis. We note the identified substructures
have high class specificity. In addition, we few patterns
may be observed in these results: Tri-halogens (Cl,F,Br) are
prevalent in explanations for BBBP, Amides are prevalent
in explanations for BACE, and aromatic ring structures are
prevalent for TOX21.



Figure 2: Additional examples for Visual Genome dataset Indoor vs. Outdoor.



Figure 3: Additional examples for Visual Genome dataset Country vs. Urban.



Figure 4: Additional examples for molecular dataset BBBP.



Figure 5: Additional examples for molecular dataset BACE.



Figure 6: Additional examples for molecular dataset TOX21 (NR-ER).



Figure 7: Top 5 most prevalent substructures for the VG dataset. We rank substructures by the ratio Re, the number of times
a substructure occurs in explanations over total occurrences in the dataset. For comparison, we also report the ratios Rp, Rn

of how many times a substructure occurs in the positively and negatively labeled data respectively, over total occurrences. To
account for rare structures, we report only substructures that occurred more than 10 times in the dataset.
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