
DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor Scene
from Sparse LiDAR Data and Single Color Image

(Supplementary Materials)

Jiaxiong Qiu1∗ Zhaopeng Cui2∗ Yinda Zhang3*

Xingdi Zhang1 Shuaicheng Liu1,4† Bing Zeng1 Marc Pollefeys2,5
1 UESTC 2ETH Zürich 3Google 4Megvii Technology 5Microsoft

In this supplementary materials, we provide more de-
tails about our synthetic data, network architecture, ablation
study, and qualitative results on both indoor and outdoor
data.

1. Synthetic Data
Due to the lack of high-quality surface normal ground

truth for real data, we generate synthetic data to pre-train
the surface normal estimation network (i.e. a DCU).

1.1. CARLA

CARLA is an open-source simulator for the research
of autonomous driving. It provides virtual engine that al-
lows cars to run with customized control strategy in virtual
environment as a way to test autonomous driving system.
The virtual environment can be edited in Unreal Engine 4,
and the simulator can be run through python API. More de-
tails can be found at its github repository1.

1.2. Data Generation

We use CARLA to generate synthetic training data
from two official provided virtual scenes, named Town01
and Town02. Trees with inaccurate surface normals are re-
moved to keep the ground truth of surface normals clean and
correct. To increase the diversity of data, we also manually
create three more scenes with different road maps, illumi-
nation, types of vehicles and buildings, and vehicle density
and distribution (e.g., heavy traffic and parking).

We render in total 50,000 synthetic data, including
color image, surface normal, and LiDAR sparse depth. The
rendering process takes two days on a single machine with a
4-core CPU. Virtual cameras are picked as 150ms per frame
on a driving car on road controlled by the authors to fully
explore the maps. The color images and surface normals
are rendered from the Unreal Engine. For the sparse depth,

*indicates equal contributions.
†indicates corresponding author.
1https://github.com/carla-simulator/carla

we run the LiDAR simulation in CARLA, which produces
sparse 3D points from a spinning LiDAR. We project the
sparse 3D points into the image coordinates for the sparse
depth. The camera is placed at the center on top of the car.
The camera intrinsics are set as fx = fy = 512, cx = cy =
256.

Fig. 1 shows some examples of the synthetic data. As
can be seen, our data shows high diversity with various ve-
hicles and buildings, shadows and lighting, and roadside
objects like road lamps and traffic signs. The ground-truth
surface normals and depth are also clean and accurate.

1.3. Benefits

Accurate dense depth is required to generate accurate
dense surface normals, while it is non-trivial to collect dense
depth for the outdoor scene. As a result, large scale sur-
face normal ground truth for real images does not exist, and
the normals converted from the depth of real scenes usually
contain quite a lot of noises. Therefore, we use our syn-
thetic data to pre-train the deep completion unit for surface
normal prediction.

We evaluate the angular error of the estimated normals
on KITTI validation set. The mean errors with and with-
out pre-training on synthetic data are 20.8° and 25.6° re-
spectively. The pre-training on the synthetic data signif-
icantly improves the surface normal estimation (reducing
20% of the angular error). This observation is consistent
with Zhang et al. [14].

2. Network Architecture
In this section, we introduce the detailed network ar-

chitectures for deep completion unit and attention based in-
tegration.

2.1. Deep Completion Unit

We use deep completion units (DCU) to produce dense
output from a dense color image and a sparse depth. It con-
tains two encoders consisting of ResNet blocks, and one

1



(a) RGB image (b) Sparse depth (c) Surface normal (d) Dense depth
Figure 1. Examples of our synthetic data. We use Carla [3] to generate 50,000 synthetic data for outdoor on-road scene. Besides RGB
image (a), dense depth (d), and surface normal (c), we also run its LiDAR simulator to generate sparse depth (b). For better visualization,
the sparse depth samples are enlarged twice.



Name Layer Description Output Tensor Dim.
Input image H×W×3

concat(sparse input, mask) H×W×2
Image Encoder

Res1 1 3×3 Res.Block, 32 channels, stride 1 H×W×32
Res1 2 3×3 Res.Block, 64 channels, stride 1 H×W×64
Res2 1 3×3 Res.Block, 128 channels, stride 2 1⁄2H×1⁄2W×128
Res2 2 3×3 Res.Block, 128 channels, stride 1 1⁄2H×1⁄2W×128
Res3 1 3×3 Res.Block, 256 channels, stride 2 1⁄4H×1⁄4W×256
Res3 2 3×3 Res.Block, 256 channels, stride 1 1⁄4H×1⁄4W×256
Res4 1 3×3 Res.Block, 256 channels, stride 2 1⁄8H×1⁄8W×256
Res4 2 3×3 Res.Block, 256 channels, stride 1 1⁄8H×1⁄8W×256
Res5 1 3×3 Res.Block, 512 channels, stride 2 1⁄16H×1⁄16W×512
Res5 2 3×3 Res.Block, 512 channels, stride 1 1⁄16H×1⁄16W×512

Sparse Encoder
ResS1 3×3 Res.Block, 32 channels, stride 1 H×W×32
ResS2 3×3 Res.Block, 97 channels, stride 1 H×W×97
ResS3 3×3 Res.Block, 193 channels, stride 2 1⁄2H×1⁄2W×193
ResS4 3×3 Res.Block, 385 channels, stride 2 1⁄4H×1⁄4W×385
ResS5 3×3 Res.Block, 513 channels, stride 2 1⁄8H×1⁄8W×513
ResS6 3×3 Res.Block, 512 channels, stride 2 1⁄16H×1⁄16W×512

Decoder
sum 1 Sum(Res5 2, ResS6) 1⁄16H×1⁄16W×512
up 1 Up-projection Block 1⁄8H×1⁄8W×257
sum 2 Sum(concat(Res4 2,up 1), ResS5) 1⁄8H×1⁄8W×513
up 2 Up-projection Block 1⁄4H×1⁄4W×129
sum 3 Sum(concat(Res3 2,up 2), ResS4) 1⁄4H×1⁄4W×385
up 3 Up-projection Block 1⁄2H×1⁄2W×65
sum 4 Sum(concat(Res2 2,up 3), ResS3) 1⁄2H×1⁄2W×193
up 4 Up-projection Block H×W×33
sum 5 Sum(concat(Res1 2,up 4), ResS2) H×W×97
convD5 3×3 conv, 1 channels H×W×1
Output dense output H×W×1

Table 1. Detailed architectures of the deep completion unit.
Here we take the depth estimation as an example.The deep com-
pletion units for the normal estimation share similar architectures.
All the code will be released upon acceptance.

decoder consisting of up-projection blocks [8]. The archi-
tectures of the specific components in DCU for the depth
estimation are listed in Tab. 1. The detailed structures of
ResNet and up-projection blocks we used are shown in
Fig. 2.

2.2. Attention Based Integration

We use an attention mechanism to integrate the depths
recovered from two pathways. We feed the feature map of
the last layer in each pathway into an attention block shown
in Fig. 2 (c) to predict score maps. The first two convolution
layers of each path in the attention block have 97 channels.
The last convolution layer produces 1 channel feature map,
which is then fed into the softmax layer to produce the nor-
malized attention map.

3. Model Analysis
3.1. Deep Completion Unit

In Sec. 4.2 of the main submission, we show that re-
placing our DCU with traditional early fusion, i.e., the color
image and spare depth are concatenated and then fed as in-
put, causes about 43mm error increase (in RMSE). Here we

conv relubn

conv bn

conv
(stride = 1)

bn + relu

(a) ResNet block

conv

conv relubn

conv

+ relu

conv_transpose

upSample conv bn

bn
+ Plus

Concatconv

conv

(b) Up-projection block

conv relubn conv relubn conv

softmax
conv relubn conv relubn conv

(c) Attention block
Figure 2. Detailed structures of ResNet, up-projection, and at-
tention blocks we used.

(a) Input RGB image

(b) Cropped image (c) Result w/o DCU (d) Result with DCU

Figure 3. Effect of deep completion unit. We show qualitative
results of the depth prediction from models trained without and
with DCU. (b-d) show zoom-in views of the color image and the
output dense depth for the marked regions in (a). The model with
DCU produces sharper boundaries and preserves thin structures.

show additional evaluations.
We first show a qualitative comparison to the above

early fusion strategy in Fig. 3. The model without DCU is
easily affected by the ad-hoc feature, such as the bushes be-
hind the light pole, which yields noisy depth for thin struc-
tures. Comparatively, the model trained with DCU learns to
preserve the completeness of thin structures, which is con-
sistent with the color image, such as the tree trunk.

We then keep the late fusion architecture in DCU but
replace the summation with concatenation in the decoder,
and re-train the whole system keeping all the other parts of
the network unchanged. The RMSE again increases about
10mm. Not only just the performance is worse, the concate-



R
G

B
Sp

ar
se

G
T

B
ila

te
ra

l
T

G
V

Z
ha

ng
et

al
.

O
ur

s

Figure 4. Qualitative results on NYU v2 validation set [10]. From top to bottom are input RGB image, sparse depth samples (500),
ground truth dense depth, results of Bilateral [10], TGV [5], Zhang et al. [13], and our method. For better visualization, the sparse depth
samples are enlarged twice.

RMSE MAE iRMSE iMAE
CSPN [2] 1019.64 279.46 2.93 1.15
Spade-RGBsD [7] 917.64 234.81 2.17 0.95
HMS-Net [6] 841.78 253.47 2.73 1.13
MSFF-Net [12] 836.69 241.54 2.63 1.07
NConv-CNN [4] 829.98 233.26 2.60 1.03
Sparse-to-Dense [9] 814.73 249.95 2.80 1.21
Ours with inverse L1 loss 767.34 229.06 2.40 1.08
Ours with L2 loss 758.38 226.50 2.56 1.15

Table 2. Performance of depth completion on KITTI test set
[11].

nation alternative also costs more memory during training
and testing.

3.2. Evaluation Metric and Loss Function

We evaluate the effect of training with L2 and L1

losses. In our paper, we train our model with L2 loss, fol-

lowing [11]. Inspired by Spade-RGBsD [7] and NConv-
CNN [4], we also train our model using the inverse L1 loss
on the depth. Its performances on the test set (from the
KITTI official testing server) is shown in Tab. 2. As can be
seen, training with the inverse L1 improves the iRMSE and
iMAE, but yields slightly worse RMSE and MAE which are
still better than the other methods.

4. Qualitative Results
4.1. Evaluation in Indoor Scenes

We show the qualitative comparison in indoor environ-
ments in Fig. 4. We compare our method with NYUv2
dataset [10] to some related methods including bilateral
filter using color images (Bilateral) [10], optimization us-
ing total variance (TGV) [5], and deep depth completion



method for indoor scenes [13]. As can be seen, our method
performs the best among all these methods. Bilateral [10]
fails when the input depth is not dense enough, which makes
sense as it is mostly used to fill in small areas with missing
data. TGV [5] is sensitive to bright textures but overlooks
dark textures, which yields noisy flat surfaces and over-
smooths depth boundaries (e.g., the boundaries of the door
and chairs). Zhang et al. [13] produces in general good re-
sults but is sensitive to the boundary estimation, therefore
the results contains noisy boundaries with blocky artifacts.

4.2. More Qualitative Results in Outdoor Scenes

We also show more qualitative results on KITTI vali-
dation set [11] in Fig. 5 and Fig. 6. Similar to our main sub-
mission, we compare our method to Bilateral [10], Fast (the
fast bilateral solver) [1], TGV [5], and Zhang et al. [13].
From the highlighted regions, we can see that our method
consistently performs better than these methods. From the
left examples in both Fig. 5 and Fig. 6, we can see that the
mixed LiDAR signals on some near objects (e.g., tree trunk,
bicyclist, and traffic sign) cause obvious artifacts in the fi-
nal dense depth estimation for all the other methods, while
our method solves this problem by learning a confidence
mask within the network. Moreover, we can also see that
our method also outperforms the other methods in distant
areas and recovers more details of the objects in the dis-
tance. We refer the reader to the highlighted regions for
details.

References
[1] J. T. Barron and B. Poole. The fast bilateral solver. In Proc.

of the European Conf. on Computer Vision (ECCV), pages
617–632, 2016.

[2] X. Cheng, P. Wang, and R. Yang. Depth estimation via affin-
ity learned with convolutional spatial propagation network.
In Proc. of the European Conf. on Computer Vision (ECCV),
pages 108–125, 2018.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun. CARLA: An open urban driving simulator. In
Proc. of the 1st Annual Conference on Robot Learning, pages
1–16, 2017.

[4] A. Eldesokey, M. Felsberg, and F. S. Khan. Propagating
confidences through cnns for sparse data regression. In The
British Machine Vision Conference (BMVC), 2018.

[5] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and
H. Bischof. Image guided depth upsampling using
anisotropic total generalized variation. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), pages 993–
1000, 2013.

[6] Z. Huang, J. Fan, S. Yi, X. Wang, and H. Li. Hms-net: Hi-
erarchical multi-scale sparsity-invariant network for sparse
depth completion. arXiv preprint arXiv:1808.08685, 2018.

[7] M. Jaritz, R. De Charette, E. Wirbel, X. Perrotton, and
F. Nashashibi. Sparse and dense data with cnns: Depth com-

pletion and semantic segmentation. In Proc. of International
Conf. on 3D Vision (3DV), pages 52–60, 2018.

[8] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and
N. Navab. Deeper depth prediction with fully convolutional
residual networks. In Proc. of International Conf. on 3D Vi-
sion (3DV), pages 239–248, 2016.

[9] F. Ma, G. V. Cavalheiro, and S. Karaman. Self-
supervised sparse-to-dense: Self-supervised depth comple-
tion from lidar and monocular camera. arXiv preprint
arXiv:1807.00275, 2018.

[10] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
Proc. of the European Conf. on Computer Vision (ECCV),
pages 746–760, 2012.

[11] J. Uhrig, N. Schneider, L. Schneidre, U. Franke, T. Brox, and
A. Geiger. Sparsity invariant cnns. In Proc. of International
Conf. on 3D Vision (3DV), 2017.

[12] B. Wang, Y. Feng, and H. Liu. Multi-scale features fusion
from sparse lidar data and single image for depth completion.
Electronics Letters, 2018.

[13] Y. Zhang and T. Funkhouser. Deep depth completion of a sin-
gle rgb-d image. In Proc. of the IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), pages 175–185, 2018.

[14] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and
T. Funkhouser. Physically-based rendering for indoor scene
understanding using convolutional neural networks. In Proc.
of the IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5287–5295, 2017.



R
G

B
Sp

ar
se

C
on

fid
en

ce
N

or
m

al
w

c
w

n
B

ila
te

ra
l

Fa
st

T
G

V
Z

ha
ng

et
al

.
O

ur
s

Figure 5. More qualitative results on KITTI validation set. From top to bottom are RGB image input, sparse depth input, confidence
mask, estimated surface normals, attention map for color pathway, attention map for normal pathway, results of Bilateral [10], Fast [1],
TGV [5], Zhang et al. [13], and our method. We mark some regions in the results to highlight the difference across methods.



R
G

B
Sp

ar
se

C
on

fid
en

ce
N

or
m

al
w

c
w

n
B

ila
te

ra
l

Fa
st

T
G

V
Z

ha
ng

et
al

.
O

ur
s

Figure 6. More qualitative results on KITTI validation set. From top to bottom are RGB image input, sparse depth input, confidence
mask, estimated surface normals, attention map for color pathway, attention map for normal pathway, results of Bilateral [10], Fast [1],
TGV [5], Zhang et al. [13], and our method. We mark some regions in the results to highlight the difference across methods.


