
A. Checking for Vanishing and Explod-
ing Gradients

In this work, we have intentionally restricted our-
selves to a class of defenses that are currently known
to be broken against powerful adversaries, and imple-
mented the known attack methods that have succeeded
against them. This has enabled us to show that an
ensemble of weak defenses, combined with appropriate
stochastic measures, comprises a more powerful collec-
tive defense than its individual constituents.

We have spent considerable effort looking for any pos-
sible form of obfuscated gradient to ensure that we have
not succeeded through inadvertently withholding infor-
mation from the adversary. As our last check against
this issue, we look for vanishing and/or exploding gra-
dients. This is a common problem with many types of
neural networks that can cause failure to converge due
to numerical instability, and was found to be an inadver-
tent source of obfuscation in prior works [4]. In Table 2
we show statistics on the norm of the 40 gradient steps
used by PGD to attack a single image.

The values at k = 0 are shown for the ResNet50
model that comes pre-trained in pyTorch, and values
k = 1 through k = 10 are with our fine-tuned model
with one through ten transforms selected. Looking at
the mean norm of the gradient, we see that it starts out
at a value of 57.65, which looks more like an exploding
gradient and would be clipped back to the ✏ ball of the
PGD iteration. As k increase the mean norm decrease
to a more reasonable range of values. We see no evi-
dence for exploding or vanishing gradients that would
cause numerical instability and cause a failure for the
attacker’s optimization process. In fact, we see more

Table 2: Statistics on norm of the gradient during PGD
search. Measure over 40 PGD attack steps, and using
40 EoT steps for each gradient estimate, across 1000
images from the ImageNet validation set.

k min max mean std median

0 0.00 330.87 57.65 26.96 55.09
1 0.00 108.53 21.27 9.96 20.24
2 0.00 45.09 10.96 5.06 10.49
3 0.01 60.03 6.97 3.11 6.65
4 0.01 37.56 5.07 2.18 4.84
5 0.12 40.88 3.92 1.76 3.66
6 0.17 39.76 3.02 1.41 2.79
7 0.16 47.31 2.32 1.15 2.11
8 0.13 37.74 1.85 1.01 1.64
9 0.15 33.78 1.52 0.92 1.32
10 0.14 33.08 1.30 0.86 1.10
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Figure 6: The y-axis (log-scale) shows the L2 norm,
and x-axis which sequential PGD step’s gradient is
considered. Standard deviation is shown in a lighter
shaded region around each plot, for k = 0, 1, 3, 5, 7, 10
transforms being used in the defense. 40 EoT steps
where used for k � 0.

unstable gradients when k = 0, before we have ever
introduced our attacks. Here we see a minimum magni-
tude of 0.0000, and a maximum of 330.87. The range
of gradient magnitude shrinks as k increases, making
the problem fundamentally more numerically stable.
This is caused largely because of the averaging of 40
gradients by the EoT process, which reduces the im-
pact of large and small magnitude outliers on the PGD
steps. Another trend is that as k increases, we see the
minimum norm of the gradient increase. This makes
intuitive sense, as larger k corresponds to a larger com-
bination of possible defensive transforms, necessitating
more work from the adversary to circumvent.

In Figure 6 we look at the norm of the gradient used
by PGD across the PGD steps. Here it is clear that
after 5 steps, the average norm stabilizes around some
value with a large standard deviations, regardless of the
value of k. As k increases, the average norm decreases
and is consistent.

B. Why BaRT Works as a Defense

The results presented demonstrate that BaRT pro-
vides an effective, though not perfect, defense against
adversarial attack. Throughout testing we believe we
have eliminated the possibility of an obfuscated gra-



Table 3: Statistics on absolute cosine similarity between
successive steps of PGD. Statistics collected from PGD
with 40 iterations and 40 EoT steps per gradient, run
over 1000 images from the ImageNet test set.

k min max mean std median

0 0.000 0.561 0.283 0.111 0.302
1 0.000 0.671 0.374 0.137 0.411
2 0.000 0.571 0.265 0.114 0.279
3 0.000 0.561 0.109 0.083 0.092
4 0.000 0.519 0.075 0.060 0.062
5 0.000 0.364 0.066 0.044 0.058
6 0.000 0.266 0.050 0.033 0.044
7 0.000 0.223 0.034 0.024 0.030
8 0.000 0.152 0.023 0.017 0.020
9 0.000 0.171 0.017 0.013 0.014
10 0.000 0.145 0.016 0.013 0.013

dient as a source of misleading positive results. The
question then becomes: why does BaRT work?

As we have explained, our intuition behind the BaRT
defense’s effectiveness is that it is not always possible for
the adversary to find a single alteration that can simul-
taneously satisfy the large number of possible transfor-
mation combinations. The search space becomes large,
and the randomized nature of a variety of transforma-
tions make it so that (hopefully) changes to support
one set of transforms fail to be effective for a different
set of transforms. Since the selection is random, the
adversary is left with few winning options.

We can empirically test this hypothesis by looking
at the gradients of successive PGD steps during the at-
tack process. If the absolute cosine similarity between
successive steps is near 1.0, it means there is a straight
path from the original starting image to one that suc-
cessfully fools the victim model. If it is zero, it means
there is no information in the gradient at all, and the
PGD attack is instead performing a type of random
search. We plot statistics of the absolute cosine similar-
ity between successive PGD steps in Table 3.

Here we can see a clear progression of behavior. For
k  2, the cosine similarity is a relatively large value
(⇡ 0.3), indicating that the gradient direction between
steps is related but the path taken adjusts direction as
well. This makes sense and is part of why PGD is more
effective than FGSM: if a single direction was sufficient,
FGSM with a larger step size would be equally effective.

As k increases toward 10, we see that the mean and
max cosine similarity between successive steps begins
to decrease and approach 0. This indicates that the
PGD attack is heading in a nearly orthogonal direction
at consecutive steps. We have taken all steps to ensure
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Figure 7: The y-axis shows the absolute cosine similar-
ity, and x-axis which pair of successive PGD steps are be-
ing compared. Standard deviation is shown in a lighter
shaded region around each plot, for k = 0, 1, 3, 5, 7, 10
transforms being used in the defense. 40 EoT steps
were used for k � 0.

the gradient can be back-propagated through transfor-
mations using EoT and BPDA, and that the gradients
are not vanishing or exploding. As such, this provides
empirical evidence that our hypothesis is correct: The
PGD attack is not able to make successful adversarial
examples because there is no single perturbation to the
input that can satisfy a large number of different and
randomly applied transformations to the image.

We further explore the behavior of the similarity of
PGD gradient directions comparing step-by-step gra-
dients in Figure 7. We consider the 40 PGD steps se-
quentially, and compare the cosine similarity between
just successive pairs of steps, averaged across 1000 im-
ages randomly selected from the test set. Here we can
see that when k  1, the similarity between successive
steps starts out small, and later increases as the PGD
optimization process finds a path toward successfully
fooling the model.

As k increases, we see a significant change in behav-
ior. The relation between successive PGD steps starts
out near its highest, and then tends toward zero after
a few steps of PGD. The larger k becomes, the more
depressed the similarity of adjacent gradients. Because
we have determined that the norm of the gradients is
in a numerically stable range and has not exploded or
vanished, it appears PGD is unable to find an pertur-



bation that successfully attacks the variety of possible
transformations and their combinations.

While these results do not provide proof that BaRT
will always be successful, we find them informative
to understanding the nature of how BaRT provides
improvements in detection under attack.

C. Transformation Details

In this section of the appendix we will provide further
details of all 25 transformations used in our work. For
transformations that were briefly mentioned because
they were members of a group, we will provide similar
short textual description.

More importantly, we extract the code from
each transformation used in our code base. We
hope to release the full source code in the fu-
ture. Each code snippet is extracted from a class’
def transform(self, img) function, which takes in
the image object as a numpy array of size 224⇥ 224⇥ 3,
where the first two dimensions are width and height,
and the last dimension gives the red, green, and blue
channels in that order.

As part of the contract of the transform method, the
return value will be a tuple of 1) the newly transformed
image, and 2) an ordered list of the randomly selected
parameter values for the transform. The purpose of
returning the parameter values is so that they can be
used when training the BPDA networks. The length of
the returned list will be the number of extra channels
|P (t)| added to the associated BPDA network, and each
channel will be filled with the value returned in the list.
When we return the parameter values in the code, we
normalize them so that they are in the range of [0, 1],
and booleans are converted to 0 and 1 exactly.

The function definitions assume a number of standard
imports for python libraries, such as numpy and scikit-
image. A number of the functions also make use of the
three helper functions for randomly sampling values
shown below:

def randUnifC(low, high, params=None):

p = np.random.uniform()

if params is not None:

params.append(p)

return (high-low)*p + low

def randUnifI(low, high, params=None):

p = np.random.uniform()

if params is not None:

params.append(p)

return round((high-low)*p + low)

def randLogUniform(low, high, base=np.exp(1)):

div = np.log(base)

return base**np.random.uniform(np.log(low)/div,

np.log(high)/div),!

Figure 8: Color Precision Reduction

For each transform, we will include an image from the
ImageNet validation set of an adorable kitten, followed
by examples of that transformation applied to the kitten.
We use the kitten because it is adorable.2 The original
kitten image will be the leftmost image of each trio,
and the center and right images are randomly selected
transformations of the kitten.

The distribution of parameters for each transform
were adjusted based on a small sample of 10 images from
the training set. The distributions were adjusted to the
point that, subjectively, we felt we could reliably tell
what the image was after transformation. Tuning the
distributions more rigorously may allow one to optimize
the performance of BaRT when under attack or not
under attack, but we leave that for future research.

The first five transforms do not belong to larger
groups. Since they are fully described in section 3, we
include only the related code here. For the rest of the
transforms we include both code and a more detailed
description than can be found in the main body.

C.1. Color Precision Reduction

This transformation alters images by reducing the
color depth. The number of resulting channels is chosen
from U [8, 200]. With 50% probability, we reduce all
three color channels by an equal amount, or alter each
channel independently. In the future, more advanced
color quantization algorithms could be examined.

scales = [np.asscalar(np.random.random_integers(8,

200)) for x in range(3)],!

multi_channel = np.random.choice(2) == 0

params = [multi_channel] + [s/200.0 for s in scales]

if multi_channel:

img = np.round(img*scales[0])/scales[0]

else:

for i in range(3):

img[:,:,i] = np.round(img[:,:,i]*scales[i]) /

scales[i],!

return img, params

2Some of the authors feel that a dog should have been chosen.



Figure 9: JPEG Noise

Figure 10: Swirl

C.2. JPEG Noise
In this transformation, the image is encoded at a

lower JPEG quality level — chosen from U [55, 95] —
and then re-loaded.

quality = np.asscalar(np.random.random_integers(55,

95)),!

params = [quality/100.0]

pil_image = PIL.Image.fromarray(

(img*255.0).astype(np.uint8) ),!

f = BytesIO()

pil_image.save(f, format='jpeg', quality=quality)

jpeg_image = np.asarray( PIL.Image.open(f)

).astype(np.float32) / 255.0,!

return jpeg_image, params

C.3. Swirl
Using the scikit-image package, each image is

“swirled” by some amount to create a “whirlpool” effect.
The angle of rotation, center of rotation, and radius of
effect are all randomized.

strength = (2.0-0.01)*np.random.random(1)[0] + 0.01

c_x = np.random.random_integers(1, 256)

c_y = np.random.random_integers(1, 256)

radius = np.random.random_integers(10, 200)

params = [strength/2.0, c_x/256.0, c_y/256.0,

radius/200.0],!

img = skimage.transform.swirl(img, rotation=0,

strength=strength, radius=radius, center=(c_x,

c_y))

,!

,!

return img, params

Figure 11: Noise Injection

C.4. Noise Injection
In this defense, random noise is applied to each image.

There is a 50% probability that the noise will be applied
to all channels, and a 50% probability that different
noise values will be added to each channel independently.
The type of noise is chosen uniformly from six varieties
implemented in scikit-image.

params = []

# average of color channels, different contribution for

each channel,!

options = ['gaussian', 'poisson', 'salt', 'pepper',

's&p', 'speckle'],!

noise_type = np.random.choice(options, 1)[0]

params.append(options.index(noise_type)/6.0)

per_channel = np.random.choice(2) == 0

params.append( per_channel )

if per_channel:

for i in range(3):

img[:,:,i] = skimage.util.random_noise(

img[:,:,i], mode=noise_type ),!

else:

img = skimage.util.random_noise( img,

mode=noise_type ),!

return img, params

C.5. FFT Perturbation
r, c, _ = img.shape

#Everyone gets the same factor to avoid too many weird

artifacts,!

point_factor = (1.02-0.98)*np.random.random((r,c)) +

0.98,!

randomized_mask = [np.random.choice(2)==0 for x in

range(3)],!

keep_fraction = [(0.95-0.0)*np.random.random(1)[0] +

0.0 for x in range(3)],!

params = randomized_mask + keep_fraction

for i in range(3):

im_fft = fftpack.fft2(img[:,:,i])

# Set r and c to be the number of rows and columns

of the array.,!

r, c = im_fft.shape



Figure 12: FFT Perturbation

if randomized_mask[i]:

mask = np.ones(im_fft.shape[:2]) > 0

im_fft[int(r*keep_fraction[i]):

int(r*(1-keep_fraction[i]))] = 0,!

im_fft[:, int(c*keep_fraction[i]):

int(c*(1-keep_fraction[i]))] = 0,!

mask = ~mask

#Now things to keep = 0, things to remove = 1

mask = mask * ~(np.random.uniform(

size=im_fft.shape[:2] ) <

keep_fraction[i])

,!

,!

#Now switch back

mask = ~mask

im_fft = np.multiply(im_fft, mask)

else:

im_fft[int(r*keep_fraction[i]):

int(r*(1-keep_fraction[i]))] = 0,!

im_fft[:, int(c*keep_fraction[i]):

int(c*(1-keep_fraction[i]))] = 0,!

#Now, lets perturb all the rest of the non-zero

values by a relative factor,!

im_fft = np.multiply(im_fft, point_factor)

im_new = fftpack.ifft2(im_fft).real

#FFT inverse may no longer produce exact same

range, so clip it back,!

im_new = np.clip(im_new, 0, 1)

img[:,:,i] = im_new

return img, params

C.6. Zoom Group
C.6.1. Random Zoom

Guo, Rana, Cissé, et al. [13] considered cropping and
rescaling of an image as one of their defenses, which
is effectively zooming in on a portion of the image, an
approach that was defeated by Athalye, Engstrom, Ilyas,
et al. [11]. We reuse this as one of our defenses, where
the distance from each edge of the image is cropped by
U [10, 50], independently for each edge.

h, w, _ = img.shape

i_s = np.random.random_integers(10, 50)

i_e = np.random.random_integers(10, 50)

j_s = np.random.random_integers(10, 50)

Figure 13: Random Zoom

j_e = np.random.random_integers(10, 50)

params = [i_s/50, i_e/50, j_s/50, j_e/50]

i_e = h-i_e

j_e = w-j_e

#Crop the image...

img = img[i_s:i_e,j_s:j_e,:]

#...now scale it back up

img = skimage.transform.resize(img, (h, w, 3))

return img, params

C.6.2. Seam Carving Expansion
Seam Carving [29] is an approach to find irregular

but contiguous paths of pixels through an image, such
that the pixels along the path can be removed while
avoiding perturbation of the main image content. This
allows for a type of fast content aware image zooming,
which we use as another defense.

We randomly select some number of pixels x, y ⇠
U [10, 50] to remove from the image horizontally or ver-
tically. With a 50% chance, we will only remove pixels
from one axis of the image instead of both. Once the
pixels are removed, we re-scale the image back to its
original height and width.

h, w, _ = img.shape

both_axis = np.random.choice(2) == 0

toRemove_1 = np.random.random_integers(10, 50)

toRemove_2 = np.random.random_integers(10, 50)

params = [both_axis, toRemove_1/50, toRemove_2/50]

if both_axis:

#First remove from vertical

eimg = skimage.filters.sobel(

skimage.color.rgb2gray(img) ),!

img = skimage.transform.seam_carve(img, eimg,

'vertical', toRemove_1),!

#Now from horizontal

eimg = skimage.filters.sobel(

skimage.color.rgb2gray(img) ),!

img = skimage.transform.seam_carve(img, eimg,

'horizontal', toRemove_2),!

else:

eimg = skimage.filters.sobel(

skimage.color.rgb2gray(img) ),!

direction = 'horizontal'



Figure 14: Seam Carving Expansion

Figure 15: Alter HSV

if toRemove_2 < 30:

direction = 'vertical'

img = skimage.transform.seam_carve(img, eimg,

direction, toRemove_1),!

#Now scale it back up

img = skimage.transform.resize(img, (h, w, 3))

return img, params

C.7. Color Space Group
C.7.1. Alter HSV

Hue is modified by a value h ⇠ U [�0.05, 0.05] and
both the Saturation and Value channels are modified
by a random value sampled from s, v ⇠ U [�0.25, 0.25].

img = color.rgb2hsv(img)

params = []

#Hue

img[:,:,0] += randUnifC(-0.05, 0.05, params=params)

#Saturation

img[:,:,1] += randUnifC(-0.25, 0.25, params=params)

#Value

img[:,:,2] += randUnifC(-0.25, 0.25, params=params)

img = np.clip(img, 0, 1.0)

img = color.hsv2rgb(img)

img = np.clip(img, 0, 1.0)

return img, params

C.7.2. Alter XYZ
With this transformation, the image is converted to

the CIE 1931 XYZ colorspace, perturbed, and then
converted back to RGB. All three color channels will
be modified by a different random value, sampled as
x, y, z ⇠ U [�0.25, 0.25].

Figure 16: Alter XYZ

Figure 17: Alter LAB

img = color.rgb2xyz(img)

params = []

#X

img[:,:,0] += randUnifC(-0.05, 0.05, params=params)

#Y

img[:,:,1] += randUnifC(-0.05, 0.05, params=params)

#Z

img[:,:,2] += randUnifC(-0.05, 0.05, params=params)

img = np.clip(img, 0, 1.0)

img = color.xyz2rgb(img)

img = np.clip(img, 0, 1.0)

return img, params

C.7.3. Alter LAB
With this transformation, the image is converted to

the CIELAB colorspace, perturbed, and then converted
back to RGB. The L⇤ channel is modified by a value l ⇠
U [�5, 5], and both the a⇤ and b⇤ channels are modified
by a random value sampled from a, b ⇠ U [�2, 2].

img = color.rgb2lab(img)

params = []

#L

img[:,:,0] += randUnifC(-5.0, 5.0, params=params)

#a

img[:,:,1] += randUnifC(-2.0, 2.0, params=params)

#b

img[:,:,2] += randUnifC(-2.0, 2.0, params=params)

# L 2 [0,100] so clip it; a & b channels can have

negative values.,!

img[:,:,0] = np.clip(img[:,:,0], 0, 100.0)

img = color.lab2rgb(img)

img = np.clip(img, 0, 1.0)

return img, params



Figure 18: Alter YUV

C.7.4. Alter YUV
Both the U and V channels are modified by a random

value sampled from u, v ⇠ U [�0.02, 0.02], and Y is
modified by a value y ⇠ U [�0.05, 0.05].

img = color.rgb2yuv(img)

params = []

#Y

img[:,:,0] += randUnifC(-0.05, 0.05, params=params)

#U

img[:,:,1] += randUnifC(-0.02, 0.02, params=params)

#V

img[:,:,2] += randUnifC(-0.02, 0.02, params=params)

# U & V channels can have negative values; clip only Y

img[:,:,0] = np.clip(img[:,:,0], 0, 1.0)

img = color.yuv2rgb(img)

img = np.clip(img, 0, 1.0)

return img, params

C.8. Contrast Group
C.8.1. Histogram Equalization

The first transformation in this group performs the
simplest of histogram equalizations, applied separately
over each channel. All channels use the same number
of bins for the histogram, which is chosen from bins ⇠
U [40, 256].

nbins = np.random.random_integers(40, 256)

params = [ nbins/256.0 ]

for i in range(3):

img[:,:,i] = skimage.exposure.equalize_hist(

img[:,:,i], nbins=nbins),!

return img, params

C.8.2. Adaptive Histogram Equalization
For the adaptive case we use the Contrast Lim-

ited Adaptive Histogram Equalization (clahe) algo-
rithm [30]. With a 50% probability, the adaptive his-
togram equalization is applied on either the whole image
or on a channel-by-channel basis. For every application
of the process, the kernel width and heights are selected

Figure 19: Histogram Equalization

Figure 20: Adaptive Histogram Equalization

as kw, kh ⇠ U [22, 37]. A clip limit parameter is chosen
as c ⇠ U [0.01, 0.04].
min_size = min(img.shape[0], img.shape[1])/10

max_size = min(img.shape[0], img.shape[1])/6

per_channel = np.random.choice(2) == 0

params = [ per_channel ]

kernel_h = [ randUnifI(min_size, max_size,

params=params) for x in range(3)],!

kernel_w = [ randUnifI(min_size, max_size,

params=params) for x in range(3)],!

clip_lim = [randUnifC(0.01, 0.04, params=params) for x

in range(3)],!

if per_channel:

for i in range(3):

kern = (kernel_w[i], kernel_h[i])

img[:,:,i] =

skimage.exposure.equalize_adapthist(

img[:,:,i], kernel_size=kern,

clip_limit=clip_lim[i])

,!

,!

,!

else:

kern = (kernel_w[0], kernel_h[0])

img = skimage.exposure.equalize_adapthist( img,

kernel_size=kern, clip_limit=clip_lim[0]),!

return img, params

C.8.3. Contrast Stretching
The last approach we consider in this group performs

a simple re-scaling of all values within a channel to
“stretch” to a specified minimum and maximum value.
With a 50% probability this will be done on the whole
image at once with a single value range, or on a channel-
by-channel basis with a different min and max value
for each channel. The minimum will be selected from
min ⇠ U [0.01, 0.04], and the maximum from max ⇠
U [0.96, 0.99].



Figure 21: Contrast Stretching

per_channel = np.random.choice(2) == 0

params = [ per_channel ]

low_precentile = [ randUnifC(0.01, 0.04, params=params)

for x in range(3)],!

hi_precentile = [ randUnifC(0.96, 0.99, params=params)

for x in range(3)],!

if per_channel:

for i in range(3):

p2, p98 = np.percentile(img[:,:,i],

(low_precentile[i]*100,

hi_precentile[i]*100))

,!

,!

img[:,:,i] =

skimage.exposure.rescale_intensity(

img[:,:,i], in_range=(p2, p98))

,!

,!

else:

p2, p98 = np.percentile(img, (low_precentile[0] *

100, hi_precentile[0]*100)),!

img = skimage.exposure.rescale_intensity( img,

in_range=(p2, p98) ),!

return img, params

C.8.4. Grey Scale Mix
Each channel is given a random weight sampled as

wr, wg, wb ⇠ U [0, 1], and then all channels are set to
the same weighted average of the channels (i.e., Igrey =
(wr ·R+ wg ·G+ wb ·B)/(wr + wg + wb). Then each
channel is set to this value (R0 = G0 = B0 = Igrey)
to create a grey scale image. This is an alteration of
a crude form of grey scale transformation where each
channel contributes equally.
# average of color channels, different contribution for

each channel,!

ratios = np.random.rand(3)

ratios /= ratios.sum()

params = [x for x in ratios]

img_g = img[:,:,0] * ratios[0] + img[:,:,1] * ratios[1]

+ img[:,:,2] * ratios[2],!

for i in range(3):

img[:,:,i] = img_g

return img, params

C.8.5. Grey Scale Partial Mix
This is the same as the Grey Scale Mix transform, in

that we first compute a random weighted average grey

Figure 22: Grey Scale Mix

Figure 23: Grey Scale Partial Mix

scale image Igrey. Then, instead of simply setting each
channel to the new grey value, we randomly interpolate
between the original channel’s value and the grey scale
target. So we sample pr, pg, pb ⇠ U [0, 1] and set each
channel as the interpolated value (e.g., R0 = pr · R +
(1� pr) · Igrey).

ratios = np.random.rand(3)

ratios/=ratios.sum()

prop_ratios = np.random.rand(3)

params = [x for x in ratios] + [x for x in prop_ratios]

img_g = img[:,:,0] * ratios[0] + img[:,:,1] * ratios[1]

+ img[:,:,2] * ratios[2],!

for i in range(3):

p = max(prop_ratios[i], 0.2)

img[:,:,i] = img[:,:,i]*p + img_g*(1.0-p)

return img, params

C.8.6. 2/3 Grey Scale Mix
This technique is also similar to Grey Scale Mix,

but here we randomly select one of the three channels
to exclude. The remaining two channels will have a
randomly weighted average computed, and the same
two channels will be set to this new grey image. The
randomly selected channel will be left as is, so only two
of three channels will have been altered.

params = []

# Pick a channel that will be left alone and remove it

from the ones to be averaged,!

channels = [0, 1, 2]

remove_channel = np.random.choice(3)

channels.remove( remove_channel)

params.append( remove_channel )



Figure 24: 2/3 Grey Scale Mix

ratios = np.random.rand(2)

ratios/=ratios.sum()

params.append(ratios[0]) #They sum to one, so first

item fully specifies the group,!

img_g = img[:,:,channels[0]] * ratios[0] +

img[:,:,channels[1]] * ratios[1],!

for i in channels:

img[:,:,i] = img_g

return img, params

C.8.7. One Channel Partial Grey

In this case, we randomly pick one channel to convert
to the grey scale value, and leave the other two channels
alone. The value used will be a random weighted aver-
age from the other two channels (each weight sampled
from U [0, 1]), and similar to Grey Scale Partial Mix,
we will interpolate the grey scale value Igrey with the
randomly selected channel using a ratio chosen from
U [0.1, 0.9].

params = []

# Pick a channel that will be altered and remove it

from the ones to be averaged,!

channels = [0, 1, 2]

to_alter = np.random.choice(3)

channels.remove(to_alter)

params.append(to_alter)

ratios = np.random.rand(2)

ratios/=ratios.sum()

params.append(ratios[0]) #They sum to one, so first

item fully specifies the group,!

img_g = img[:,:,channels[0]] * ratios[0] +

img[:,:,channels[1]] * ratios[1],!

# Lets mix it back in with the original channel

p = (0.9-0.1)*np.random.random(1)[0] + 0.1

params.append( p )

img[:,:,to_alter] = img_g*p + img[:,:,to_alter]

*(1.0-p),!

return img, params

Figure 25: One Channel Partial Grey

Figure 26: Gaussian Blur

C.9. Denoising Group
C.9.1. Gaussian Blur

The first technique in this group is a simple Gaussian
blur. To add randomness, each channel will have a
different blur strength chosen from � ⇠ U [0.1, 3]. With
a 50% probability, all channels will be set to use the
same �.
if randUnifC(0, 1) > 0.5:

sigma = [randUnifC(0.1, 3)]*3

else:

sigma = [randUnifC(0.1, 3), randUnifC(0.1, 3),

randUnifC(0.1, 3)],!

img[:,:,0] = skimage.filters.gaussian(img[:,:,0],

sigma=sigma[0]),!

img[:,:,1] = skimage.filters.gaussian(img[:,:,1],

sigma=sigma[1]),!

img[:,:,2] = skimage.filters.gaussian(img[:,:,2],

sigma=sigma[2]),!

return img, [x/3.0 for x in sigma]

C.9.2. Median Filter
Next we use a simple median filter, and follow the

same approach as the Guassian blur. The radius of
the blur kernel is chosen from r ⇠ U [2, 5], with a 50%
chance all channels are forced to use the same radius.
if randUnifC(0, 1) > 0.5:

radius = [randUnifI(2, 5)]*3

else:

radius = [randUnifI(2, 5), randUnifI(2, 5),

randUnifI(2, 5)],!

# median blur - different sigma for each channel

for i in range(3):

mask = skimage.morphology.disk(radius[i])

img[:,:,i] = skimage.filters.rank.median(

img[:,:,i], mask) / 255.0,!

return img, [x/5.0 for x in radius]



Figure 27: Median Filter

Figure 28: Mean Filter

C.9.3. Mean Filter
This is the same as the median filter described above,

but using a mean. It was used as an attempted defensive
technique by Li and Li [12]. We choose the radius
randomly from r ⇠ U [2, 3] instead of using a fixed
radius.

if randUnifC(0, 1) > 0.5:

radius = [randUnifI(2, 3)]*3

else:

radius = [randUnifI(2, 3), randUnifI(2, 3),

randUnifI(2, 3)],!

# mean blur w/ different sigma for each channel

for i in range(3):

mask = skimage.morphology.disk(radius[i])

img[:,:,i] = skimage.filters.rank.mean(img[:,:,i],

mask)/255.0,!

return img, [x/3.0 for x in radius]

C.9.4. Mean Bilateral Filter
Next we use mean bilateral filtering, which is an edge

preserving filter [31]. We apply it on a channel-wise
basis. The implementation we use has 3 parameters,
including the radius, that we set using values sampled
from U [5, 20].
params = []

radius = []

ss = []

for i in range(3):

radius.append( randUnifI(2, 20, params=params) )

ss.append( randUnifI(5, 20, params=params) )

ss.append( randUnifI(5, 20, params=params) )

for i in range(3):

mask = skimage.morphology.disk(radius[i])

img[:,:,i] = skimage.filters.rank.mean_bilateral(

img[:,:,i], mask, s0=ss[i], s1=ss[3+i])/255.0,!

Figure 29: Mean Bilateral Filter

Figure 30: Chambolle Denoising

return img, params

C.9.5. Chambolle Denoising
We apply Chambolle’s total variation denoising al-

gorithm [38] as a potential defense. We choose the
algorithm’s weight parameter from w ⇠ U [0.05, 0.25]
and with a 50% chance apply it on either the whole
image holistically, or on a channel-by-channel basis.
params = []

weight = (0.25-0.05)*np.random.random(1)[0] + 0.05

params.append( weight )

multi_channel = np.random.choice(2) == 0

params.append( multi_channel )

img = skimage.restoration.denoise_tv_chambolle( img,

weight=weight, multichannel=multi_channel),!

return img, params

C.9.6. Wavelet Denoising
We apply wavelet denoising [32] using the Daubechies

1 wavelet as another defense. Wavelets where used by
Prakash, Moran, Garber, et al. [15] but easily defeated
with BPDA [17]. For the randomized parameters, we
use a 50% chance to first convert to the YCbCr color
space first (the scikit-image documentation recommends
this to improve results), a 50:50 chance to select between
soft and hard thresholding of the filter, and a 50:50
chance to use either 0 or 1 levels of the wavelets.
convert2ycbcr = np.random.choice(2) == 0

wavelet = np.random.choice(self.wavelets)

mode_ = np.random.choice(["soft", "hard"])

denoise_kwargs = dict(multichannel=True,

convert2ycbcr=convert2ycbcr, wavelet=wavelet,

mode=mode_)

,!

,!



Figure 31: Wavelet Denoising

max_shifts = np.random.choice([0, 1])

params = [convert2ycbcr, self.wavelets.index(wavelet)/

float(len(self.wavelets)), max_shifts/5.0,

(mode_=="soft")]

,!

,!

img = skimage.restoration.cycle_spin(img,

func=skimage.restoration.denoise_wavelet,

max_shifts=max_shifts, func_kw=denoise_kwargs,

multichannel=True, num_workers=1)

,!

,!

,!

return img, params

Initially we wanted to use a wider spectrum of possible
wavelets and levels for this filter, but found them to be
too computationally demanding.

C.9.7. Non-Local Means Denoising
The last denoising approach we apply is a fast Non-

Local Means denoising [39], which is edge preserving
and beneficial when repeated patterns are present. This
same transform was used by Xu, Evans, and Qi [27].
With a 50% chance we will apply this denoising to either
the image holistically, or on a channel-by-channel basis.
The patch-size parameter is chosen from U [5, 7], and
the patch-distance from U [6, 11]. A third random value
is used to perturb the estimation of the variance �, and
is better understood through the code in the appendix.

h_1 = randUnifC(0, 1)

params = [h_1]

sigma_est = np.mean(

skimage.restoration.estimate_sigma(img,

multichannel=True) )

,!

,!

h = (1.15-0.6)*sigma_est*h_1 + 0.6*sigma_est

#If false, it assumes some weird 3D stuff

multi_channel = np.random.choice(2) == 0

params.append( multi_channel )

#Takes too long to run without fast mode.

fast_mode = True

patch_size = np.random.random_integers(5, 7)

params.append(patch_size)

patch_distance = np.random.random_integers(6, 11)

params.append(patch_distance)

if multi_channel:

img = skimage.restoration.denoise_nl_means( img,

h=h, patch_size=patch_size,

patch_distance=patch_distance,

fast_mode=fast_mode )

,!

,!

,!

Figure 32: Non-Local Means Denoising

else:

for i in range(3):

sigma_est = np.mean(

skimage.restoration.estimate_sigma(

img[:,:,i], multichannel=True ) )

,!

,!

h = (1.15-0.6)*sigma_est*params[i] +

0.6*sigma_est,!

img[:,:,i] =

skimage.restoration.denoise_nl_means(

img[:,:,i], h=h, patch_size=patch_size,

patch_distance=patch_distance,

fast_mode=fast_mode )

,!

,!

,!

,!

return img, params

D. FGSM Figures
We found the FGSM attack to be significantly less

effective than PGD and so concentrated our efforts
on the stronger PGD attack. For completeness, we
include the results from the FGSM experiments here in
Figure 33.

Note that in Figure 33b, Adversarial Training out-
performs BaRT, but Kurakin, Goodfellow, and Bengio
specifically trained their models to withstand the FGSM
attack. They report that providing a similar defense
against PGD was nearly computationally intractable
and provided no benefits over training with FGSM.

E. BaRT Ensembles
BaRT is premised on the amalgamation of multiple

weak defenses into one stronger system. We can further
extend BaRT as a “self-ensembling” technique, by aver-
aging the predictions of BaRT over multiple realizations
of t(·). Because t(·) represents the randomized process
of selecting multiple transformations with random pa-
rameterizations, each invocation of t(·) will produce a
different image, and thus our model will produce a dif-
ferent result. In this way the BaRT technique can be
used as an ensemble approach without any additional
work, as the intrinsic nature of t(·) provides the diversity
of outputs that is a necessary condition for an ensemble
to improve on the performance of its members [40].

To attack our ensembled BaRT defense, we note that
since we are only averaging the results of the same
model f(·), no changes are necessary for running our
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Figure 33: Results of FGSM attacks. (a) Accuracy of BaRT for a varying number of transforms, when not under
attack and when being attacked by FGSM. (b) Accuracy of BaRT and the an Adversarially Trained model when
under attack by FGSM for varying adversarial distances.

attack and obtaining correct gradient estimates. How-
ever, considering an ensemble of size Q, it would not be
fair to leave the PGD attack iteration zPGD the same
in evaluation. For this reason, for an ensemble of size
Q we will use Q · zPGD attack iterations. We leave the
number of EoT iterations zEoT = 10 , and will only con-
sider an maximal adversarial attack distance of ✏ = 8.
While we would prefer to vary zEoT and ✏ as well, we do
not have the computational resources to run all of these
experiments. We choose zPGD as the parameter to in-
crease because it allows us to simultaneously perform a
larger attack against the standard BaRT model (with-
out any ensembling), which is an indepdently valuable
experiment to determine the robustness of the BaRT
method. (See Appendix F.)

The results on un-targeted attacks can be seen in
Figure 34a. For all of these experiments, we used k = 5
random transformations per ensemble member, 10 EoT
steps for the adversary, and a maximum adversarial
distance of ✏ = 8.

One of the drawbacks of BaRT is a decrease in ac-
curacy when the model is not being attacked by an
adversary. This downside can be completely eliminated
by ensembling: both Top-1 and Top-5 accuracy can be
improved to the level of the baseline ResNet model that
had no prepossessing transforms applied.

We also observe that Top-5 accuracy when under at-
tack by PGD improves significantly (from 55.4% with

a single member to 71.4% with a thirteen member en-
semble), although the Top-1 accuracy does not show
an improvement. We suspect two factors are a play
that result in this phenomena. 1) The variance intro-
duced by our transforms t(·) can impede the model’s
ability to get the correct class as the Top-1 prediction,
especially when multiple classes are related and small
details become necessary to make distinctions. Because
of the correlated classes, we expect the variance to be
greatest in the Top-1 and Top-2 predictions, and for
the variance to decrease with the prediction rank. 2)
The variance reduction obtained by ensembling is of the
same order of magnitude as the variance introduced to
the Top-1 and Top-2 predictions, causing the effects to
“cancel out” and result in the same accuracy. The Top-
5 predictions would then have a lower initial variance,
which more easily averaged out by voting, resulting in
an improved accuracy. This would explain why the ac-
curacy at Top-1 remains relatively stable, but has a
more significant improvement in the Top-5 regime.

The effects of ensembling on targeted attacks are
shown in Figure 34b. The attack parameters were the
same as those used on the un-targeted attacks above.
The FGSM attack was too weak to draw any conclusions.
We see some evidence that ensembling improves robust-
ness against targeted PGD attacks, although there was
too much variability in outcome to make definitive con-
clusions. In order to reduce variation, we ran these
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Figure 34: The effect of ensemble size on BaRT performance. In both figures, ensembles were formed by voting
after the final softmax activation. (a) Accuracy of the model when varying size of ensemble for un-targeted attacks.
The gray horizontal lines represent baseline model accuracy when no transforms or attacks are applied (solid: Top-1
accuracy; dashed: Top-5 accuracy). (b) Success of the adversary of when varying size of ensemble for targeted
attacks.

experiments across 2000 images (two from each class)
instead of 1000 images as in the targeted experiments
reported elsewhere in the paper.

In Figure 35 we report the same results, but with
ensembles where the final decision was the result of
adding the logits of the members, i.e. before the final
softmax activation was performed. This is less reason-
able than performing the aggregation after the softmax,
but because the base learners are so similar (indeed,
they are identical except for choice of random prepos-
sessing steps) their logits are in the same range and
can be effectively averaged. We find no significant dif-
ference between combining ensemble members before
and after softmax activation for untargetted attacks,
which accords with the results on ensembling similar
base networks reported by Ju, Bibaut, and Laan [41].
Interestingly, the performance against targeted attacks
appears considerably better when aggregating logits.
(Compare Figure 34b and Figure 35b.) As noted above
these results are particularly noisy and since we do not
have a hypothesis about why averaging logits would im-
prove defense in this situation, we do not wish to read
too much into this improvement.

As a final set of experiments, we consider the trade-off
between the “width” and “depth” of a defensive ensemble.

“Width” refers to the number of ensemble members,
and “depth” to the number of transforms applied to
the input of each member. We did this in order to
answer the following question: If you had a limited
transformation budget, would it be better to apply
more of them in series to fewer networks, or to apply
fewer transformations in parallel to more networks?

Figure 37 shows the results for total transformation
budgets ranging from three to ten. For each one of the
the subplots, the left side shows the results of having
a single network with n transforms applied in series
to the input, while the right side shows the results of
an ensemble of n different networks each using only
a single transform. In between are intermediate sized
ensembles. For example, the bottom left (“Transform
Budget 9”) shows the effect of having a single network
with nine transforms applied in series, three networks
with three transforms each, and nine networks with one
transform each.

Across the different transform budgets, having a
single network with the maximum number of transforms
is best if you want to maximize the Top-1 accuracy
when under attack, but having a larger ensemble with
fewer transforms applied to each member is better for
Top-5 accuracy or when the system is not under attack.
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Figure 35: The effect of ensemble size on BaRT performance. In both figures, ensembles were formed by voting
based on the member networks’ logits, before the final softmax activation. (a) Accuracy of model when varying size
of ensemble for un-targeted attackss. The gray horizontal lines represent model accuracy when no transforms or
attacks are applied (solid: Top-1 accuracy; dashed: Top-5 accuracy). (b) Success of the adversary of when varying
size of ensemble for targeted attacks.

These results indicate that a defensive actor may be
able to manipulate width-vs-height as a meta-parameter
in order to respond to their particular context. However,
more experiments should be run on larger transform
budgets before drawing strong conclusions. Applying
only one or two transformations before doing inference
does not take full advantage of the compounding na-
ture of applying randomized transformations serially.
Having only one or two members of an ensemble does
not take full advantage of the the ensemble’s ability to
trade higher variance for lower bias. Of all of the re-
sults shown in Figure 37, only one experimental set-up
has an ensemble size greater than two and uses more
than two transforms per ensemble member: the middle
condition of Transform Budget 9, with an ensemble of
three networks with three transforms each.

In order to address this limitation, we re-ran the
experiments with transform budgets up to 16. (See
Figure 38.) This required a slight change to the way
BaRT ensembles and the BPA models were constructed,
since our total set of transforms was grouped into ten
categories. Previously, selections were made without
replacement, but this constraint needed to be dropped
in order to support using more than ten pre-processing
transformations in series on a given input. The results

are qualitatively similar to those for transform budgets
up to ten, although there is some indication that ensem-
bles of size two and three may be useful for improving
Top-1 accuracy against FGSM, and in the Transform
Budget = 16 case, against PGD as well.

We also ran experiments comparing width and depth
on targeted attacks (Figure 39). The FGSM attack was
not strong enough to produce a success rate above 0.2%
in any condition. The PGD attack always achieved bet-
ter success rates as ensemble size increased (i.e. as the
number of transformed applied in serial decreased). The
results were similar when we tested transform transform
budgets up to 16.

F. Increasing PGD Strength
By scaling the strength of the PGD attack as the

ensemble size increased we were also able to judge the
effect increasing the attack iterations have on a single
(non-ensembled) network. As can be seen in Figure 36,
increasing the number of attack iterations from 40 to
520 had a negligible effect on accuracy. Top-1 accuracy
decreased from 19.40% to 18.30% and Top-5 accuracy
decreased from 55.40% to 55.00%. While it is somewhat
surprising that increased attack strength does not have
a more dramatic impact on accuracy, we feel that the
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Figure 36: Accuracy of the model when under attack by
PGD with a varying number of iterations in the attack.

results of Appendix A and especially Appendix B offer
some explanation. To wit, when a sufficient number of
transformations are applied to the input image consec-
utive gradient updates are nearly orthogonal to each
other. Because more iterations do not lead the adver-
sary any closer to an image which successfully fools the
model, increasing the number of adversarial iterations
does not result in a lower accuracy.
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Figure 37: Accuracy of model when trading off between ensembles of many networks with fewer transforms and a
single network with more transforms. For each subplot, the total number of transforms available is constant. For
example, the bottom left subplot shows the three conditions in which nine transforms can be applied: an “ensemble”
of size one with nine transforms applied to its input (on the left of the x-axis), an ensemble of three networks, each
with using three transforms (in the middle), or an ensemble of nine networks, each with a single transform (on the
right of the x-axis). The number of preprocessing transforms is therefore given by the transform budget divided by
the ensemble size. The gray horizontal lines represent model accuracy when no transforms or attacks are applied
(solid: Top-1 accuracy; dashed: Top-5 accuracy). Larger transform budgets are shown in Figure 38.
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Figure 38: Accuracy of model when trading off between ensembles of many networks with fewer transforms and
a single network with more transforms. For each subplot, the total number of transforms available is constant.
For example, the bottom left subplot shows the three conditions in which fourteen transforms can be applied: an
“ensemble” of size one with fourteen transforms applied to its input (on the left end of the x-axis), an ensemble of
two networks, each with using seven transforms (just to the right), an ensemble of seven networks each using two
transforms (in the middle of the x-axis), or an ensemble of fourteen networks, each with a single transform (on the
right of the x-axis). The number of preprocessing transforms is therefore given by the transform budget divided by
the ensemble size. The gray horizontal lines represent model accuracy when no transforms or attacks are applied
(solid: Top-1 accuracy; dashed: Top-5 accuracy). Transform budgets between three and ten are shown in Figure 37.
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Figure 39: The attacker’s success rate when trading off between ensembles of many networks with fewer transforms
and a single network with more transforms. For each subplot, the total number of transforms available is constant.
For example, the bottom left subplot shows the three conditions in which nine transforms can be applied: an
“ensemble” of size one with nine transforms applied to its input (on the left of the x-axis), an ensemble of three
networks, each with using three transforms (in the middle), or an ensemble of nine networks, each with a single
transform (on the right of the x-axis). The number of preprocessing transforms is therefore given by the transform
budget divided by the ensemble size.


