
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera
Motion, Optical Flow and Motion Segmentation

—
Supplementary Material

Anurag Ranjan1 Varun Jampani2 Lukas Balles1

Kihwan Kim 2 Deqing Sun 2 Jonas Wulff 1,3 Michael J. Black1

1Max Planck Institute for Intelligent Systems 2NVIDIA 3MIT
{aranjan, lballes, jwulff, black}@tuebingen.mpg.de

{vjampani, kihwank, deqings}@nvidia.com

A. Appendix
A.1. Competitive Collaboration as a General Learn-

ing Framework

Competitive collaboration (CC) can be seen as a general
learning framework for training multiple task-specific net-
works. To showcase this generality, we demonstrate CC on
a mixed-domain classification problem in Section A.1.1 and
analyze CC convergence properties in Section A.1.2.

A.1.1 Mixed Domain Classification

Digit classification is the task of classifying a given image I
into one of the 10 digit classes t ∈ {0, 1, 2, .., 9}. Two most
widely used datasets for digit classification include images
of the postal code digits, MNIST [6] and street view house
numbers, SVHN [9]. For our setup, we take the samples
from both of the datasets, and shuffle them together. This
means that, although an image and a target, (Ii, ti) form a
pair, there is no information if the digits came from MNIST
or SVHN.

We now train our model under Competitive Collaboration
framework given the mixed-domain dataset MNIST+SVHN,
a mixture of MNIST and SVHN. The model consists of two
networks Rx and Fx that compete with each other regulated
by a moderatorMy which assigns training data to each of the
competitors. Here, x denotes the combined weights of the
two competitor networks (R,F ) and y denotes the weight of
the moderator network M . The networks are trained using
an alternate optimization procedure consisting of two phases.
In the competition phase, we train the competitors by fixing
the moderator M and minimizing,

E1 =
∑
i

mi ·H(Rx(Ii), ti)+(1−mi)·H(Fx(Ii), ti) (1)

where mi = My(Ii) ∈ [0, 1] is the output of the mod-
erator and is the probability of assigning a sample to Rx.
H(Rx(Ii), ti) is the cross entropy classification loss on the
network Rx and a similar loss is applied on network Fx.

During the collaboration phase, we fix the competitors
and train the moderator by minimizing,

E2 = E1+∑
i

λ ·

{
− log(mi + ε) if LRi < LFi ,

− log(1−mi + ε) if LRi
≥ LFi

.

(2)

where LRi
= H(Rx(Ii), ti) is the cross entropy loss

from network Rx and similarly LFi
= H(Fx(Ii), ti). In

addition to the above loss function E1, we use an additional
constraint on the moderator output that encourages the vari-
ance of m, σ2

m = Σi(mi − m̄)2 to be high, where m̄ is the
mean of m within a batch. This encourages the modera-
tor to assign images to both the models, instead of always
assigning them to a single model.

In an ideal case, we expect the moderator to correctly
classify MNIST digits from SVHN digits. This would en-
able each of the competitors to specialize on either MNIST
or SVHN, but not both. In such a case, the accuracy of
the model under CC would be better than training a single
network on the MNIST+SVHN mixture.

Experimental Results For simplicity, we use a CNN with
2 convolutional layers followed by 2 fully-connected layers
for both the digit classification networks (R,F ) as well as
the moderator network M . Each of the convolutional layers
use a kerel size of 5 and 40 feature maps. Each of the fully
connected layers have 40 neurons.

We now compare the performance of the CC model on
MNIST+SVHN mixture with training a single network on

1



Training M S M+S

R Basic 1.34 11.88 8.96
R CC 1.41 11.55 8.74
F CC 1.24 11.75 8.84
R,F,M CC 1.24 11.55 8.70

Table 1: Percentage classification errors. M and S refer to
MNIST and SVHN respectively.

MNIST SVHN

R 0% 100%
F 100% 0%

Table 2: Assignments of moderator to each of the competi-
tors.

the same dataset. We see that our performance is better
on the mixture dataset as well as individual datasets (see
Table 1). As shown in Table 1, the network R specializes on
SVHN digits and network F specializes on MNIST digits.
By using the networks (R,F,M), we get the best results
as M picks the specialized networks depending on the data
sample.

We also examine the classification accuracy of the mod-
erator on MNIST and SVHN digits. We observe that mod-
erator can accurately classify the digits into either MNIST
or SVHN without any labels (see Table 2). The moderator
learns to assign 100% of MNIST digits to F and 100% of
SVHN digits to R. This experiment provides further evi-
dence to support the notion that CC can be generalized to
other problems.

A.1.2 Theoretical Analysis

Competitive Collaboration is an alternating optimization
procedure. In the competition phase, we minimize E1 with
respect to x; in the collaboration phase we minimize E2 =
E1 + λLM with respect to y. One might rightfully worry
about the convergence properties of such a procedure, where
we optimize different objectives in the alternating steps.

It is important to note that—while E1 and E2 are differ-
ent functions—they are in fact closely related. For example,
they have the same minimizer with respect to the moderator
output, namely assigning all the mass to the network with
lower loss. Ideally, we would want to use E1 as the objec-
tive function in both phases, but resort to using E2 in the
collaboration phase, since it has empirically proven to be
more efficient in pushing the moderator towards this optimal
choice.

Hence, while we are minimizing different objective func-

tions in the competition and collaboration phases, they are
closely related and have the same “goal”. In the follow-
ing, we formalize this mathematically by identifying gen-
eral assumptions on how “similar” two functions have to
be for such an alternating optimization procedure to con-
verge. Roughly speaking, we need the gradients of the two
objectives to form an acute angle and to be of similar scales.
We will then discuss to what extent these assumptions are
satisfied in the case of Competitive Collaboration. Proofs
are outsourced to the end of this section for readability.

General Convergence Theorem Assume we have two
functions

f, g : Rn × Rm → R (3)

and are performing alternating gradient descent updates of
the form

xt+1 = xt − α∇xf(xt, yt), (4)
yt+1 = yt − β∇yg(xt+1, yt). (5)

We consider the case of single alternating gradient descent
for convenience in the analysis. With minor modifications,
the following analysis also extends to the case of multiple
gradient descent updates (or even exact minimization) in
each of the alternating steps. The following Theorem formu-
lates assumptions on f and g under which such an alternating
optimization procedure converges to a first-order stationary
point of f .

Theorem 1. Assume f is lower-bounded and x 7→
∇xf(x, y) is Lipschitz continuous with constant G1 for ev-
ery y and y 7→ ∇yf(x, y) is Lipschitz continuous with con-
stant G2(x). Assume α ≤ 2L−11 . If there is a constant
B > 0 such that

β〈∇yf(x, y),∇yg(x, y)〉 ≥G2(x)β2

2
‖∇yg(x, y)‖2

+B‖∇yf(x, y)‖2
(6)

then (xt, yt) converges to a first-order stationary point of f .

Eq. (6) is a somewhat technical assumption that lower-
bounds the inner product of the two gradients in terms of
their norms and, thus, encodes that these gradients have to
form an acute angle and be of similar scales.

Convergence of Competitive Collaboration We now dis-
cuss to what extent the assumptions for Theorem 1 are satis-
fied in the case of Competitive Collaboration. For the math-
ematical considerations to follow, we introduce a slightly
more abstract notation for the objective functions of Com-
petitive Collaboration. For a single data point, E1 has the
form

f(x, y) = M(y)LR(x) + (1−M(y))LF (x), (7)

2



where M(y) ∈ [0, 1] is a function of y (the weights of the
moderator) and LR(x), LF (x) > 0 are functions of x (the
weights of the two competing networks). The loss function
E2 reads

g(x, y) = f(x, y)

+ λ ·

{
− log(M(y) + ε) if LR(x) < LF (x),

− log(1−M(y) + ε) if LR(x) ≥ LF (x).

(8)

The following Proposition shows that f and g satisfy the
conditions of Theorem 1 under certain assumptions.

Proposition 1. Let f and g be defined by Equations (7) and
(8), respectively. If M(y), LR(x) and LF (x) are Lipschitz
smooth, then f and g fulfill the assumptions of Theorem 1.

The smoothness conditions on M(y), LR(x), LF (x) are
standard as they are, for example, needed to guarantee con-
vergence of gradient descent for optimizing any of these
objective functions individually.

This Proposition shows that the objectives for individual
data points satisfy Theorem 1. In practice, however, we are
concerned with multiple data points and objectives of the
form

f(x, y) =
1

n

n∑
i=1

f (i)(x, y), (9)

where

f (i)(x, y) =M (i)(y)L
(i)
R (x)

+ (1−M (i)(y))L
(i)
F (x),

(10)

and

g(x, y) =
1

n

n∑
i=1

g(i)(x, y), (11)

where

g(i)(x, y) = f (i)(x, y)

+ λ ·

{
− log(M (i)(y) + ε) if L(i)

R (x) < L
(i)
F (x),

− log(1−M (i)(y) + ε) if L(i)
R (x) ≥ L(i)

F (x).

(12)

While we have just found a suitable lower bound on the inner
product of ∇yf

(i) and ∇yg
(i), unfortunately, the sum struc-

ture of ∇yf and ∇yg makes it really hard to say anything
definitive about the value of their inner product. It is plausi-
ble to assume that ∇yf and ∇yg will be sufficiently close
to guarantee convergence in practical settings. However, the
theory developed in Theorem 1 does not directly apply.

A.1.3 Proofs

Proof of Theorem 1. The update of x is a straight-forward
gradient descent step on f . Using the Lipschitz bound on f ,

we get

f(xt+1, yt) ≤ f(xt, yt)− α〈∇xf(xt, yt),∇xf(xt, yt)〉

+
G1α

2

2
‖∇xf(xt, yt)‖2

= f(xt, yt)−
(
α− G1α

2

2

)
‖∇xf(xt, yt)‖2

≤ f(xt, yt)−A‖∇xf(xt, yt)‖2

(13)

with A > 0 due to our assumption on α. For the update of y,
we have

f(xt+1, yt+1) ≤ f(xt+1, yt)

− β〈∇yf(xt+1, yt),∇yg(xt+1, yt)〉

+
β2G2(x)

2
‖∇yg(xt+1, yt)‖2.

(14)

Using the assumption on the inner product, this yields

f(xt+1, yt+1) ≤ f(xt+1, yt)−B‖∇yf(xt+1, yt)‖2.
(15)

Combining the two equations, we get

f(xt+1, yt+1)

≤ f(xt, yt)−A‖∇xf(xt, yt)‖2 −B‖∇yf(xt+1, yt)‖2

≤ f(xt, yt)− C
(
‖∇xf(xt, yt)‖2 + ‖∇yf(xt+1, yt)‖2

)
.

(16)

with C = max(A,B). We define Gt = ‖∇xf(xt, yt)‖2 +
‖∇yf(xt+1, yt)‖2 and rewrite this as

Gt ≤
f(xt, yt)− f(xt+1, yt+1)

C
(17)

Summing this equation for t = 0, . . . , T , we get

T∑
t=0

Gt ≤
f(x0, y0)− f(xT+1, yT+1)

C
. (18)

Since f is lower-bounded, this implies Gt → 0, which in
turn implies convergence to a first-order stationary point of
f .

Proof of Proposition 1. The gradient of f with respect to x
is

∇xf(x, y) = M(y)∇LR(x) + (1−M(y))∇LF (x) (19)

Since M(y) is bounded, ∇xf is Lipschitz continuous in x
given that LR and LF are Lipschitz smooth.

For the assumptions on the y-gradients, we fix x and
treat the two cases in the definition of g separately. We only
consider the case LR(x) < LF (x) here, the reverse case is

3



completely analogous. Define L(x) = LF (x)−LR(x) > 0.
The gradient of f with respect to y is

∇yf(x, y) = −L(x)∇M(y) (20)

and is Lipschitz continuous with constant G2(x) = | −
L(x)|G = L(x)G, where G is the Lipschitz constant of
M(y). We have

∇yg(x, y) = −
(
L(x) +

λ

M(y) + ε

)
∇M(y). (21)

The inner product of the two gradients reads

〈∇yf(x, y),∇yg(x, y)〉

= L(x)

(
L(x) +

λ

M(y) + ε

)
‖∇M(y)‖2,

(22)

and for the gradient norms we get

‖∇yf(x, y)‖2 = L(x)2‖∇M(y)‖2, (23)

as well as

‖∇yg(x, y)‖2 =

(
L(x) +

λ

M(y) + ε

)2

‖∇M(y)‖2.

(24)
Plugging everything into the inner product assumption of
Theorem 1 and simplifying yields

β

(
L(x) +

λ

M(y) + ε

)
≥ Gβ2

2

(
L(x) +

λ

M(y) + ε

)2

+BL(x)

(25)

Since M , LR and LF are bounded, one easily finds a choice
for β and B that satisfies this condition.

A.2. The camera warping function wc and static
flow transformer ν

The network C predicts camera motion that consist
of camera rotations sinα, sinβ, sinγ, and translations
tx, ty, tz . Thus e = (sinα, sinβ, sinγ, tx, ty, tz). Given
camera motion and depth d, we transform the image coordi-
nates (x, y) into world coordinates (X,Y, Z).

X = d
f (x− cx) (26)

Y = d
f (y − cy) (27)
Z = d (28)

where (cx, cy, f) constitute the camera intrinsics. We now
transform the world coordinates given the camera rotation
and translation.

X′ = RxRyRzX + t

where (RxRyRz, t) ∈ SE3 denote 3D rotation and transla-
tion, and X = [X,Y, Z]T . Hence, in image coordinates

x′ =
f

Z
+ cx (29)

y′ =
f

Z
+ cy (30)

We can now apply the warping as,

wc

(
I(x, y), e, d

)
= I(x′, y′). (31)

The static flow transformer is defined as,

ν(e, d) = (x′ − x, y′ − y) (32)

A.3. The flow warping function, wf

The flow warping function wf is given by

wf

(
I(x, y), ux, uy

)
= I(x+ ux, y + uy) (33)

where, (ux, uy) is the optical flow, and (x, y) is the spatial
coordinate system.

A.4. Network Architectures

We briefly describe the network architectures below. For
details, please refer to Figure 2.

Depth NetworkD. Our depth network is similar to Disp-
NetS [7] and outputs depths at 6 different scales. Each con-
volution and upconvolution is followed by a ReLU except
the prediction layers. The prediction layer at each scale has a
non-linearity given by 1/(α sigmoid(x) + β). The architec-
ture of DispResNet is obtained by replacing convolutional
blocks in DispNet by residual blocks [4].

Camera Motion Network C. The camera motion net-
work consists of 8 convolutional layers, each of stride 2
followed by a ReLU activation. This is followed by a convo-
lutional layer of stride 1, whose feature maps are averaged
together to get the camera motion.

Flow Network F . We use FlowNetC architecture [2]
with 6 output scales of flow and is shown in Figure 2. All
convolutional and upconvolutional layers are followed by
a ReLU except prediction layers. The prediction layers
have no activations. For PWC Net, we use the network
architecture from Janai et al. [5].

Mask Network M . The mask network has a U-Net [2]
architecture. The encoder is similar to the camera motion
with 6 convolutional layers. The decoder has 6 upconvolu-
tional layers. Each of these layers have ReLU activations.
The prediction layers use a sigmoid.

A.5. Qualitative Results

The qualitative results of the predictions are shown in
Figure 3. We would like to point out that, our method is able
to segment the moving car, and not the parked cars on the

4



Image Ground Truth Prediction

Figure 1: Qualitative results on Make3D test set.

roads. In addition, it segments other moving objects, such as
the bicyclist.

We compare the qualitative results for single image depth
prediction in Figure 4. We also contrast our results with
basic models that were trained independently without a joint
loss in Figure 5. We observe that our model produces better
results, capturing moving objects such as cars and bikes, as
well as surface edges of trees, pavements and buildings.

We compare the qualitative results for optical flow es-
timation in Figure 6. We show that our method performs
better than UnFlow [8], Geonet [11] and DF-Net [13] . Our
flow estimations are better at the boundaries of the cars and
pavements. In contrast, competing methods produce blurry
flow fields.

A.6. Additional Experiments

Depth evaluation on Make3D dataset. We also test on
the Make3D dataset [10] without training on it. We use our
our model that is trained only on Cityscapes and KITTI. Our
method outperforms previous work [12, 13, 3] as shown in
Table 3. We show qualitative results in Fig. 1.

Pose evaluation on Sintel. We test on Sintel’s alley se-
quence [1] without training on it and compare it with Zhou
et al. [12]. For this comparison, Zhou et al.’s model is taken
from Pinard’s implementation. We show quantitative evalua-
tion using relative errors on pose in Table 4.

Training using a shared encoder. We train the camera
motion network, C and motion segmentation network, M
using a common shared encoder but different decoders. In-
tuitively, it seems that camera motion network can benefit
from knowing static regions in a scene, which are learned by
the motion segmentation network. However, we observe a

Zhou [12] DF-Net [13] Godard [3] CC (ours)
0.383 0.331 0.361 0.320

Table 3: Absolute Relative errors on Make3D test set.

alley 1 alley 2
Zhou et al. [12] 0.002± 0.001 0.027± 0.019
CC (ours) 0.002± 0.001 0.022± 0.015

Table 4: Relative errors on Sintel alley sequences.

Sequence 09 Sequence 10
Shared Encoder 0.017 ± 0.009 0.015 ± 0.009
Uncoupled Networks 0.012 ± 0.007 0.012 ± 0.008

Table 5: Absolute Trajectory errors on KITTI Odometry.

Method Depth Pose Flow Mask
Geonet [11] 15ms 4ms 45ms -
CC (ours) 13ms 2ms 34ms 3ms

Table 6: Average runtime on TitanX GPU with images of
size 128 × 418.

performance degradation on camera motion estimates (Table
5). The degradation of results using a shared encoder are
because feature encodings for one network might not be op-
timal for other networks. Our observation is consistent with
Godard et al. [3] (Supp. Mat. Table 4), where sharing an
encoder for depth and camera motion estimation improves
depth but the perfomance on camera motion estimates are
not as good.

A.7. Timing Analysis

We analyze inference time of our network and compare it
with Geonet [11] in Table 6. We observe that our networks
have a faster run time using the same sized 128×416 images
on a single TitanX GPU. This is because our networks are
simpler and smaller than ones used by Geonet.

For training, we measure the time taken for each iteration
consisting of forward and backward pass using a batch size
of 4. Training depth and camera motion networks (D,C)
takes 0.96s per iteration. Traing the mask network, M takes
0.48s per iteration, and the flow network F takes 1.32s per
iteration. All iterations have a batch size of 4. In total, it
takes about 7 days for all the networks to train starting with
random initialization on a single 16GB Tesla V100.

5



Figure 2: Architecture of the DispNet (left), MaskNet (center-top), FlowNetC (right) and Camera Motion Network (center-
bottom). Convolutional layers are red (stride 2) and orange (stride 1) and upconvolution layers are green (stride 2). Other
colors refer to special layers. Each layer is followed by ReLU, except prediction layers. In each block, the numbers indicate
the number of channels of the input feature map, the number of channels of the output feature map, and the filter size.

6



Image Predicted Depth Consensus Mask

Static scene Optical Flow Segmented Flow in moving regions Full Optical Flow

Figure 3: Network Predictions. Top row: we show image, predicted depth, consensus masks. Bottom row: we show static
scene optical flow, segmented flow in the moving regions and full optical flow.

7



Image Ground Truth Zhou et al. [12]

Geonet [11] DF-Net [13] CC (ours)

Figure 4: Qualitative results on single view depth prediction. Top row: we show image, interpolated ground truth depths, Zhou
et al. [12] results. Bottom row: we show results from Geonet [11], DF-Net [13] and CC (ours) results.

8



Image Ground Truth CC (DispResNet)

Basic (DispNet) Basic+ssim (DispNet) CC (DispNet)

Figure 5: Ablation studies on single view depth prediction. Top row: we show image, interpolated ground truth depths,
CC using DispResNet architecture. Bottom row: we show results using Basic, Basic+ssim and CC models using DispNet
architecture.

9



Image Ground Truth UnFlow-CSS [8]

Geonet [11] DF-Net [13] CC (ours)

Figure 6: Qualitative results on Optical Flow estimation. Top row: we show image 1, ground truth flow, and predictions from
UnFlow-CSS[8]. Bottom row: we show predictions from Geonet [11], DF-Net [13] and CC (ours) model.

10



References
[1] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation. In
European Conference on Computer Vision, pages 611–625,
2012. 5

[2] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
Flownet: Learning optical flow with convolutional networks.
In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 2758–2766, 2015. 4

[3] C. Godard, O. Mac Aodha, and G. Brostow. Digging into
self-supervised monocular depth estimation. arXiv preprint
arXiv:1806.01260, 2018. 5

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778,
2016. 4

[5] J. Janai, F. Güney, A. Ranjan, M. Black, and A. Geiger. Unsu-
pervised learning of multi-frame optical flow with occlusions.
In Proceedings of the European Conference on Computer
Vision (ECCV), pages 690–706, 2018. 4

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998. 1

[7] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Doso-
vitskiy, and T. Brox. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4040–4048, 2016. 4

[8] S. Meister, J. Hur, and S. Roth. UnFlow: Unsupervised
learning of optical flow with a bidirectional census loss. arXiv
preprint arXiv:1711.07837, 2017. 5, 10

[9] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng. Reading digits in natural images with unsupervised
feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, page 5, 2011. 1

[10] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from
single monocular images. In Advances in neural information
processing systems, pages 1161–1168, 2006. 5

[11] Z. Yin and J. Shi. Geonet: Unsupervised learning of dense
depth, optical flow and camera pose. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1983–1992, 2018. 5, 8, 10

[12] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsuper-
vised learning of depth and ego-motion from video. In CVPR,
volume 2, page 7, 2017. 5, 8

[13] Y. Zou, Z. Luo, and J.-B. Huang. Df-net: Unsupervised
joint learning of depth and flow using cross-task consistency.
In European Conference on Computer Vision, pages 38–55.
Springer, 2018. 5, 8, 10

11


