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In this supplementary file, we provide details of network architecture, ablation study on recursive ResBlocks and general-
ization evaluation, comparison on real rainy images and videos, more results on synthetic rainy images and more results on
real-world rainy images.

1. Network Architecture
1.1. Architectures of PRN and PRNr

PRN in Table s1 includes 1 convolution layer, 5 ResBlocks and 1 convolution layer, and in Table s2 PRNr has the similar
architecture, but only 1 ResBlock is recursively unfolded 5 times.

Table s1. The architecture of PRN. Convolution is with the form Conv.(input channel, kernel size, padding size, stride, output channel).
Input: rainy image y (m× n× 3 ), initial x0 = y
for t = 1 to T

Concatenate(y, xt−1)
Layer 1 Conv.(6, 3, 1, 1, 32); ReLU;
Layer 2 Conv.(32, 3, 1, 1, 32); ReLU;
Layer 3 Conv.(32, 3, 1, 1, 32); ReLU;

Add(Layer1, Layer3); ReLU;
Layer 4 Conv.(32, 3, 1, 1, 32); ReLU;
Layer 5 Conv.(32, 3, 1, 1, 32); ReLU;

Add(Layer3, Layer5); ReLU;
Layer 6 Conv.(32, 3, 1, 1, 32); ReLU;
Layer 7 Conv.(32, 3, 1, 1, 32); ReLU;

Add(Layer5, Layer7); ReLU;
Layer 8 Conv.(32, 3, 1, 1, 32); ReLU;
Layer 9 Conv.(32, 3, 1, 1, 32); ReLU;

Add(Layer7, Layer9); ReLU;
Layer 10 Conv.(32, 3, 1, 1, 32); ReLU;
Layer 11 Conv.(32, 3, 1, 1, 32); ReLU;

Add(Layer9, Layer11); ReLU;
Layer 12 Conv.(32, 3, 1, 1, 3);
Output: xt (m× n× 3)

end for



Table s2. The architecture of PRNr . Convolution is with the form Conv.(input channel, kernel size, padding size, stride, output channel).
Input: rainy image y (m× n× 3 ), initial x0 = y
for t = 1 to T

Concatenate(y, xt−1)
Layer 1 Conv.(6, 3, 1, 1, 32); ReLU;
for i = 1 : 5

Layer 2 Conv.(32, 3, 1, 1, 32); ReLU;
Layer 3 Conv.(32, 3, 1, 1, 32); ReLU;

Add(Layer1, Layer3); ReLU;
end for
Layer 4 Conv.(32, 3, 1, 1, 3);
Output: xt (m× n× 3)

end for

1.2. Architectures of PReNet and PReNetr
The only difference of PReNet and PRN is the introduction of convolutional LSTM [5].

1.2.1 Convolutional LSTM

At stage t, LSTM receives both the features from ResBlocks fres(x
t−0.5) and recurrent states st−1 from stage t − 1. The

LSTM includes an input gate it, a forget gate f t, an output gate ot and a cell state ct, and can be formally expressed as,

xt = fres(x
t−0.5),

it = σ(Wix ⊗ xt +Wis ⊗ st−1 + bi),

f t = σ(Wfx ⊗ xt +Wfs ⊗ st−1 + bf ),

ot = σ(Wox ⊗ xt +Wos ⊗ st−1 + bo),

gt = tanh(Wcx ⊗ xt +Wcs ⊗ st−1 + bc),

ct = f t � ct−1 + it � gt,

st = ot � tanh(ct),

(1)

where ⊗ is 2D convolution, � is entry-wise product, σ is sigmoid function. All the convolutions in LSTM have 32 input
channels and 32 output channels, and the kernel size is 3× 3 along with 1× 1 padding.

1.2.2 Architecture details

Table s3. The architecture of PReNet and PReNetr . In fin, fres and fout, PReNet and PReNetr share the same settings with PRN and PRNr ,
respectively. The only difference is convolutional LSTM frecurrent Eqn. (1).

Input: rainy image y (m× n× 3 ), initial x0 = y

for t = 1 to T

Concatenate(y, xt−1)
Layer fin Conv.(6, 3, 1, 1, 32); ReLU;
Layer frecurrent Convolutional LSTM;
Layer fres 5 ResBlocks (PReNet) or recursive ResBlocks (PReNetr) ;
Layer fout Conv.(32, 3, 1, 1, 3);
Output: xt (m× n× 3)

end for



2. Ablation Study
2.1. Effects of recursive ResBlocks

In Sec. 4.1.2 of the main manuscript, we have shown that by adopting intra-state recursive ResBlocks, the avarage PSNR
and SSIM of PRNr and PReNetr are inferior to PRN and PReNet, respectively. But as shown in Fig. s1, the deraining results
by PRNr and PReNetr are also visually plausible, and only seem to be a little brighter than those by PRN and PReNet.
Considering the much smaller network sizes, we suggest to use PRNr and PReNetr in practical applications.

Rainy images PRN PReNet PRNr PReNetr
Figure s1. Effects of recursive ResBlocks. PRN and PReNet contain 5 ResBlocks. PRNr and PReNetr unfold 1 ResBlock 5 times.

2.2. Generalization Evaluation

To evaluate the generalization ability of PRN and PReNet, we use our models and RESCAN [3] trained for Rain100H [6]
to process Rain100L [6] and Rain12 [4]. From Table s4, PReNet-H and PRN-H trained for Rain100H degrade obviously on
Rain100L but generalize better on Rain12, partially due to that Rain12 contains heavy rain steaks. And our PReNet models
perform better generalization ability than RESCAN [3]. The result of RESCAN has visible dark artifacts, while the results
by our progressive networks are visually plausible, shown as in Fig. s2.

Table s4. Results on Rain100L and Rain12 by using Rain100H for training.
Model RESCAN PRN PReNet PRNr PReNetr

Rain100L 32.02/0.949 31.92/0.958 34.89/0.971 31.13/0.951 33.77/0.965
Rain12 30.57/0.896 34.35/0.965 36.15/0.969 33.59/0.961 35.51/0.967

Rainy image PRNr PRN

RESCAN[6] PReNetr PReNet
Figure s2. Generalization evaluation by applying the models trained for Rain100H to directly process rainy images in Rain100L.



3. Comparison with State-of-the-arts
Here, we compare PReNet with state-of-the-arts on real rainy images and real rainy videos.

3.1. Evaluation on Real Rainy Images

As shown in Fig. s3, PReNet is compared with GMM [4], DDN [1] and RESCAN [3]. On all the three images, PReNet
can remove rain straks more clear and generate visually favorable deraining images.

Rainy images GMM[4] DDN[1] RESCAN[6] PReNet
Figure s3. Visual comparison on real rainy images.

3.2. Evaluation on Real Rainy Videos

Furthermore, PReNet is adopted to process a rainy video in a frame-by-frame manner, and is compared with state-of-the-
art video deraining method, i.e., FastDerain [2]. As shown in Fig. s4, for frame #510, both FastDerain and our PReNet can
remove all the rain streaks, indicating the performance of PReNet even without the help of temporal consistency. However,
FastDerain fails in switching frames, since it is developed by exploiting the consistency of adjacent frames. As a result, for
frame #571, #572 and #640, rain streaks are remained in the results by FastDerain, while our PReNet performs favorably
and is not affected by switching frames and accumulation error. Also by exploiting the temporal information, one potential
furture work is to extend progressive networks to video deraining.



Frame #510 Frame #571 Frame #572 Frame #640
Figure s4. Visual quality comparison on a real rainy video. The first row is rainy frames, the second row is the results by FastDerain [2]
and the third row is the results by PReNet.



4. More Results on Synthetic Rainy Images
4.1. More Results on Rain100H

The results by RESCAN [3] suffer from dark noises along rain direction, while our results are more visually pleasing.

Rainy images RESCAN[3] PReNet
Figure s5. More results comparison on Rain100H.



4.2. More Results on Rain1400

The results by DDN [1] still have visible rain streaks.

Rainy images DDN[1] PReNet
Figure s6. More results comparison on Rain1400.



5. More Results on Real Rainy Images
The left is rainy images, and the right is deraining results by our PReNet.
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