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This supplementary material accompanies our main submission. In an effort to further explore select topics covered in

the main text and provide the necessary tools for future experimentation we provide the following. First, we extend GIoU

definition to a more general case for both convex and non-convex shapes. Then, we show an analytical solution for LGIoU

as a loss for n-orthotopes. Next, we provide proofs for the GIoU properties described in the main text. Then, we show the

derivation of the gradient of LGIoU . Finally, we provide more qualitative object detection results.

1. GIoU extention

In this section, we extend GIoU definition to the arbitrary shapes (convex or non-convex). If both A and B are not convex

shapes, the current definition for LGIoU cannot fulfill the second property of a metric, i.e. identity of indiscernibles. Because

if A = B, C as the smallest enclosing convex shape for A and B will not overlay A and B. Therefore LGIoU (A,B) 6= 0
(Check Sec. 3.3.2 for an intuition). To address this limitation, we extend the definition of GIoU , making it applicable to both

convex and non-convex shapes.

To generalize GIoU , we re-define C to be attained by applying a function, e.g. geometric operations, on the one of the

shapes, i.e. C = FA,B(B), F : Rn → R
n , such that FA,B ensure that A and B are enclosed by the smallest possible C.

The definition for FA,B can be rather arbitrary; however it should fulfill the following properties:

• The output space of F should be identical to its argument space, i.e. if C = FA,B(B), then C,B ⊆ S ∈ R
n.

• The area (or volume) of C, should be monotonically decreasing when B tends to A by shape similarity and spatial

proximity.

• When two objects A and B overlay perfectly, i.e. A = B, the smallest object C for A and B is exactly A or B, and

therefore |C| = |A| = |B| = |A ∩B| = |A ∪B|.

Algorithm 1: Extension to Generalized Intersection over Union

input : Given two arbitrary shapes as a reference A and prediction B: A,B ⊆ S ∈ R
n

output: GIoU

1 For A and B, find the smallest enclosing object C, where C ⊆ S ∈ R
n, which is attained by applying a function, e.g. geometric

operations, on B, i.e. C = FA,B(B), such that FA,B ensure that A and B are enclosed by the smallest possible C

2 IoU =
|A ∩B|

|A ∪B|

3 GIoU = IoU −
|C\(A ∪B)|

|C|
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One of the possible examples for the function FA,B would be an affine transformation on the predicted shape B. Therefore

in this case, C is tightest scaled, translated and rotated version of B, enclosing A and B. This definition is also consistent

with what we proposed in the case of axis aligned rectangles, where C can be seen the tightest scaled and translated version

of the predicted box, enclosing both bounding boxes.

Compared to the definition proposed in the main text, this extension has two advantages: a) It addresses the limitation of

GIoU distance to be a metric when one of the shapes is non-convex, b) C encodes the shape information of the one of the

objects which reflects not only their proximity, but also their shape similarity.

2. LGIoU as a loss for n-orthotopes

In this section, we provide the analytical solution for LGIoU as a loss for n-orthotopes. Note that any axis-aligned

hyperrectangle can be uniquely defined by any two corner coordinates. The subtraction of one coordinate from the other

gives the size along a given axis. We therefore use this representation for the following generalization to n-orthotopes.

Algorithm 2: LGIoU as a loss for axis-aligned n-orthotopes

input : The coordinates for two vertices of two axis-aligned n-orthotopes, i.e. the ground truth Og and predicted Op n-orthotopes:

Og = (xg
1,1, x

g
2,1, · · · , x

g
n,1, x

g
1,2, x

g
2,2, · · · , x

g
n,2) ⊆ R

2n,

Op = (xp
1,1, x

p
2,1, · · · , x

p
n,1, x

p
1,2, x

p
2,2, · · · , x

p
n,2) ⊆ R

2n.

output: LGIoU .

1 For the predicted n-orthotope Op, ensuring x
p
1,2 > x

p
1,1, x

p
2,2 > x

p
2,1, · · · , and x

p
n,2 > x

p
n,1:

2 x̂
p
1,1 = min(xp

1,2, x
p
1,1), x̂

p
2,1 = min(xp

2,2, x
p
2,1), · · · , x̂

p
n,1 = min(xp

n,2, x
p
n,1),

3 x̂
p
1,2 = max(xp

1,2, x
p
1,1), x̂

p
2,2 = max(xp

2,2, x
p
2,1), · · · , x̂

p
n,2 = max(xp

n,2, x
p
n,1).

4 Calculating the volume of the ground truth n-orthotope Og: V g = (xg
1,2 − x

g
1,1)× (xg

2,2 − x
g
2,1)× · · · × (xg

n,2 − x
g
n,1).

5 Calculating the volume of the predicted n-orthotope Op: V p = (x̂p
1,2 − x̂

p
1,1)× (x̂p

2,2 − x̂
p
2,1)× · · · × (x̂p

n,2 − x̂
p
n,1).

6 Calculating intersection I between Op and Og:

7 xI

1,1 = max(x̂p
1,1, x

g
1,1), xI

2,1 = max(x̂p
2,1, x

g
2,1), · · · , xI

n,1 = max(x̂p
n,1, x

g
n,1),

8 xI

1,2 = min(x̂p
1,1, x

g
1,1), xI

2,2 = min(x̂p
2,1, x

g
2,1), · · · , xI

n,2 = min(x̂p
n,1, x

g
n,1),

9 I =

{

(xI

1,2 − xI

1,1)× (xI

2,2 − xI

2,1)× · · · × (xI

n,2 − xI

n,1) if xI

1,2 > xI

1,1, x
I

2,2 > xI

2,1, · · · , x
I

n,2 > xI

n,1

0 otherwise.

10 Finding the coordinate of smallest enclosing n-orthotope Oc:

11 xc
1,1 = min(x̂p

1,1, x
g
1,1), xc

2,1 = min(x̂p
2,1, x

g
2,1), · · · , xc

n,1 = min(x̂p
n,1, x

g
n,1),

12 xc
1,2 = max(x̂p

1,1, x
g
1,1), xc

2,2 = max(x̂p
2,1, x

g
2,1), · · · , xc

n,2 = max(x̂p
n,1, x

g
n,1),

13 Calculating the volume of Oc: V c = (xc
1,2 − xc

1,1)× (xc
2,2 − xc

2,1)× · · · × (xc
n,2 − xc

n,1).

14 IoU =
I

U
, where the union U is attained by U = V p + V g − I.

15 GIoU = IoU −
V c − U

V c
.

16 LGIoU = 1−GIoU .

3. GIoU properties

As briefed in the main text, GIoU has some appealing properties. In this section, we provide the proof for each of these

properties.

3.1. Scale invariance

Proposition 1: IoU and GIoU are invariant to the scale of the problem.

Proof 1: In order to prove this proposition, we use the following theorem.

Theorem: For any arbitrary area/volume ∀A ⊆ S ∈ R
n, if the space S is scaled by a scaling factor γ, i.e. |̃S| = γ|S|,

any area/volume in this space will be scaled by this scaling factor, i.e. ∀|Ã| = γ|A|, where Ã ⊆ S̃ ∈ R
n.

Since the intersection I = A ∩ B ⊆ S, union U = A ∪ B ⊆ S, the smallest enclosing object for A and B, C ⊆ S



and Ce = C\A ∪ B ⊆ S are also arbitrary areas/volumes in the space S, scaling the space, i.e. |S̃| = γ|S|, will scale their

volume as well, i.e. |Ĩ| = γ|I|, |Ũ | = γ|U|, |C̃| = γ|C| and |C̃e| = γ|Ce|, where Ĩ, Ũ , C̃, C̃e ⊆ S̃.

Therefore,

IoU(Ã, B̃) =
|Ĩ|

|Ũ |
=

γ|I|

γ|U|
=

|I|

|U|
= IoU(A,B)

and similarly,

GIoU(Ã, B̃) =
|Ĩ|

|Ũ |
−

|C̃e|

|C̃|
=

γ|I|

γ|U|
−

γ|Ce|

γ|C|
=

|I|

|U|
−

|Ce|

|C|
= GIoU(A,B)

3.2. GIoU, a lower bound for IoU

Proposition 2: GIoU is always a lower bound for IoU , i.e. ∀A,B ⊆ S, GIoU(A,B) ≤ IoU(A,B), and this lower bound

becomes tighter when A and B have a stronger shape similarity and proximity, i.e. limA→B GIoU(A,B) = IoU(A,B).

Proof 2: To prove this proposition, we use the following trivial properties for the smallest enclosing object C for A and

B:

• A ∩B ⊆ A ⊆ A ∪B ⊆ C ⊆ S

• A ∩B ⊆ B ⊆ A ∪B ⊆ C ⊆ S

As a result, |A ∪ B| ≤ |C| ≤ |S|, or 0 ≤ |C| − |A ∪ B| ≤ |S| − |A ∪ B|. Therefore, 0 ≤ |C|−|A∪B|
|C| ≤ |S|−|A∪B|

|C| or

− |S|−|A∪B|
|C| ≤ − |C|−|A∪B|

|C| ≤ 0. Consequently, we can add the value IoU = |A∩B|
|A∪B| to each term of inequality, i.e.:

|A ∩B|

|A ∪B|
−

|S| − |A ∪B|

|C|
≤

|A ∩B|

|A ∪B|
−

|C| − |A ∪B|

|C|
︸ ︷︷ ︸

GIoU(A,B)

≤
|A ∩B|

|A ∪B|
︸ ︷︷ ︸

IoU(A,B)

When A and B have a stronger shape similarity and proximity, the difference between |A ∪B| and |A ∩B| is small. The

difference between |A ∪ B| and the volume of the smallest enclosing object |C| also needs to be less significant. Otherwise

A and B should be far apart from each other to ensure |C| ≫ |A ∪B| which contradicts the first argument. Therefore:

lim
A→B

GIoU(A,B) =
|A ∩B|

|A ∪B|
−

≈0
︷ ︸︸ ︷

|C| − |A ∪B|

|C|
=

|A ∩B|

|A ∪B|
= IoU(A,B)

Proposition 3: when two objects A and B overlay perfectly, i.e. if |A ∪ B| = |A ∩ B|, then GIoU = 1. Also GIoU value

asymptotically converges to -1 when the ratio between occupying regions of two shapes, A∪B, and the volume (area) of the

enclosing shape C tends to zero, i.e. lim
|A∪B|

|C|
→0

GIoU(A,B) = −1 .

Proof 3: When two objects A and B overlay perfectly, then |A| = |B| = |A ∩ B| = |A ∪ B|. Therefore, the smallest

object C for A and B is exactly A or B, i.e. |C| = |A| = |B| = |A ∩B| = |A ∪B|. Then, we have:

GIoU(A,B) =
|A ∩B|

|A ∪B|
−

|C| − |A ∪B|

|C|
=

|A ∩B|

|A|+ |B| − |A ∩B|
−

|C| − |A| − |B|+ |A ∩B|

|C|

=
|A|

|A|+ |A| − |A|
−

|A| − |A| − |A|+ |A|

|A|
= 1

In the other extreme case, when the ratio between occupying regions of two shapes, A ∪ B, and the volume (area) of the

enclosing shape C tends to zero, i.e. |C| ≫ |A∪B| or |C| ≫ |A|+|B|−|A∩B|. This case is possible, when |C| ≫ |A|+|B|
and |A ∩ B| ≈ 0. Otherwise if |A ∩ B| ≫ 0, A and B should have a stronger shape similarity and proximity. Therefore

according to Proof 2, the difference between |A ∪ B| and |C| is less significant, which contradicts |C| ≫ |A ∪ B|. Thus,

|C| ≫ |A|+ |B| − |A ∩B| is possible, when |C| ≫ |A|+ |B| and |A ∩B| ≈ 0. Consequently, we have:

lim
|A∪B|

|C|
→0

GIoU(A,B) =

≈0
︷ ︸︸ ︷

|A ∩B|

|A ∪B|
−

≈|C|
︷ ︸︸ ︷

|C| − |A| − |B|+

≈0
︷ ︸︸ ︷

|A ∩B|

|C|
= −1



3.3. LGIoU is a metric

The proof to show IoU as a distance, i.e. LIoU = 1− IoU , is a metric has been provided in different articles [1, 3, 4, 5].

In this section, we provide a proof to show GIoU as a distance, i.e. LGIoU = 1 − GIoU , holds all properties of a metric

such as non-negativity, identity of indiscernibles, symmetry and triangle inequality.

3.3.1 Non-negativity

Proposition 4: For any two shapes A and B, LGIoU is non-negative, i.e. ∀A,B ⊆ S, LGIoU (A,B) ≥ 0.

Proof 4: To prove this, we use the aforementioned trivial properties in Proof 2 for the smallest enclosing object C for

A and B, i.e. A ∩B ⊆ A ∪B ⊆ C. Thus 0 ≤ |A ∩B| ≤ |A ∪B| and 0 ≤ |A ∪B| ≤ |C|. Since |A ∪B| ≥ 0 and |C| ≥ 0,

we can divide each inequality with these positive values, i.e. 0 ≤ |A∩B|
|A∪B| ≤ 1 and 0 ≤ |A∪B|

|C| ≤ 1. Therefore, by summing up

these two inequalities, we have:

0 ≤
|A ∩B|

|A ∪B|
+

|A ∪B|

|C|
≤ 2.

We then multiply −1 to each side of inequality:

−2 ≤ −
|A ∩B|

|A ∪B|
−

|A ∪B|

|C|
≤ 0.

Next, we add 2 to each side of inequality:

0 ≤ 2−
|A ∩B|

|A ∪B|
−

|A ∪B|

|C|
≤ 2 ⇒ 0 ≤ 1−

|A ∩B|

|A ∪B|
+ 1−

|A ∪B|

|C|
≤ 2.

⇒ 0 ≤ 1−
|A ∩B|

|A ∪B|
+

|C| − |A ∪B|

|C|
︸ ︷︷ ︸

LGIoU

≤ 2

Consequently, LGIoU ≥ 0.

3.3.2 Identity of indiscernibles

Proposition 5: LGIoU (A,B) = 0 ⇔ B = A.

Proof 5: As we discussed in Proof 3, when two objects A and B overlay perfectly, i.e. A = B, the smallest object C

for A and B is exactly A or B, and therefore |C| = |A| = |B| = |A ∩B| = |A ∪B|.

if A = B ⇒ LGIoU (A,B) = 1−

AorB
︷ ︸︸ ︷

|A ∩B|

|A ∪B|
︸ ︷︷ ︸

AorB

+

=0
︷ ︸︸ ︷

|C| − |A ∪B|

|C|
= 1− 1 + 0 = 0

To show if LGIoU (A,B) = 0 ⇒ A = B, we can prove this by contradiction, i.e.

if LGIoU (A,B) = 0 ⇒ 1−
|A ∩B|

|A ∪B|
+

|C| − |A ∪B|

|C|
= 0 ⇒

|A ∩B|

|A ∪B|
−

|C| − |A ∪B|

|C|
= 1

if A 6= B, then A ∪B 6= A ∩B. Thus, 0 ≤ |A∩B|
|A∪B| < 1. Moreover, as discussed in Proof 2, − |C|−|A∪B|

|C| ≤ 0. Therefore,

if A 6= B ⇒
|A ∩B|

|A ∪B|
−

|C| − |A ∪B|

|C|
< 1

which contradicts
|A∩B|
|A∪B| −

|C|−|A∪B|
|C| = 1. Consequently, LGIoU (A,B) = 0 ⇒ A = B.



3.3.3 Symmetry

Proposition 6: For any two convex shapes A and B, LGIoU (A,B) = LGIoU (B,A).

Proof 6: Based on commutative laws of set algebra, we have A ∪ B = B ∪ A and A ∩ B=B ∩ A. Moreover, the smallest

enclosing convex hull (shape) between any A and B is a symmetric function and does not depend on the order of A and B,

i.e. CA,B = CB,A. Accordingly, we have:

LGIoU (B,A) = 1−
|B ∩A|

|B ∪A|
+

|CB,A| − |B ∪A|

|CB,A|
= 1−

|A ∩B|

|A ∪B|
+

|CA,B | − |A ∪B|

|CA,B |
= LGIoU (A,B)

3.3.4 Triangle inequality

Proposition 7: For any three shapes Ai, Aj and Ak, triangle inequality holds true, i.e.

LGIoU (Ai, Ak) ≤ LGIoU (Ai, Aj) + LGIoU (Aj , Ak).

1 Proof 7a (special cases):

Case 1: If none of the pairs from Ai, Aj and Ak overlap, i.e. |Ai ∩Ak| = |Aj ∩Ak| = |Ai ∩Aj | = 0:

Since 0 ≤ |Ai∪Ak|
|Ci,k|

,
|Ai∪Aj |
|Ci,j |

,
|Aj∪Ak|
|Cj,k|

≤ 1, the following inequality also holds true:

2 +
|Ai ∪Ak|

|Ci,k|
≥

|Ai ∪Aj |

|Ci,j |
+

|Aj ∪Ak|

|Cj,k|
.

By multiplying −1 and adding 4 to each side of the inequality, we have:

2−
|Ai ∪Ak|

|Ci,k|
≤ 2−

|Ai ∪Aj |

|Ci,j |
+ 2−

|Aj ∪Ak|

|Cj,k|
.

Since |Ai ∩ Ak| = |Aj ∩ Ak| = |Ai ∩ Aj | = 0, we can subtract some zero values, e.g. the terms
|Ai∩Ak|
|Ai∪Ak|

=
|Aj∩Ak|
|Aj∪Ak|

=
|Ai∩Aj |
|Ai∪Aj |

= 0, from each side of the inequality:

2−
|Ai ∩Ak|

|Ai ∪Ak|
−

|Ai ∪Ak|

|Ci,k|
≤ 2−

|Ai ∩Aj |

|Ai ∪Aj |
−

|Ai ∪Aj |

|Ci,j |
+ 2−

|Aj ∩Ak|

|Aj ∪Ak|
−

|Aj ∪Ak|

|Cj,k|
.

1−
|Ai ∩Ak|

|Ai ∪Ak|
+ 1−

|Ai ∪Ak|

|Ci,k|
≤ 1−

|Ai ∩Aj |

|Ai ∪Aj |
+ 1−

|Ai ∪Aj |

|Ci,j |
+ 1−

|Aj ∩Ak|

|Aj ∪Ak|
+ 1−

|Aj ∪Ak|

|Cj,k|
.

1−
|Ai ∩Ak|

|Ai ∪Ak|
+

|Ci,k| − |Ai ∪Ak|

|Ci,k|
︸ ︷︷ ︸

LGIoU(Ai,Ak)

≤ 1−
|Ai ∩Aj |

|Ai ∪Aj |
+

|Ci,j | − |Ai ∪Aj |

|Ci,j |
︸ ︷︷ ︸

LGIoU(Ai,Aj)

+1−
|Aj ∩Ak|

|Aj ∪Ak|
+

|Cj,k| − |Aj ∪Ak|

|Cj,k|
︸ ︷︷ ︸

LGIoU(Aj,Ak)

.

Case 2: If one of the pairs overlay perfectly, e.g. |Ai ∪Ak| = |Ai ∩Ak| = |Ci,k|:
In this case,

LGIoU (Ai, Ak) = 2−
|Ai ∩Ak|

|Ai ∪Ak|
︸ ︷︷ ︸

=1

−
|Ai ∪Ak|

|Ci,k|
︸ ︷︷ ︸

=1

= 0,

1Deriving the exact proof appears to be far from straightforward. Therefore, we show the validity of this proposition by 1) an exact proof for special

cases, 2) experimentally, checking 10
6 random samples for any counterexample.



and also |Aj ∪Ak| = |Ai ∪Aj |, |Aj ∩Ak| = |Ai ∩Aj |, |Cj,k| = |Ci,j |. Therefore, we have:

LGIoU (Ai, Aj) + LGIoU (Aj , Ak) = 4− 2×

(
|Ai ∩Aj |

|Ai ∪Aj |
+

|Ai ∪Aj |

|Ci,j |
︸ ︷︷ ︸

≤2

)

≥ LGIoU (Ai, Ak).

Case 3: If only one of the shapes are very far from the other two, e.g. |Ai ∩Ak| = 0, |Ai ∩Aj | = 0, |Ai ∪Ak| ≪ |Ci,k| and

|Ai ∪Aj | ≪ |Ci,j |:
In this case, we have:

LGIoU (Ai, Ak) = 2−
|Ai ∩Ak|

|Ai ∪Ak|
︸ ︷︷ ︸

=0

−
|Ai ∪Ak|

|Ci,k|
︸ ︷︷ ︸

≈0

≈ 2,

LGIoU (Ai, Aj) = 2−
|Ai ∩Aj |

|Ai ∪Aj |
︸ ︷︷ ︸

=0

−
|Ai ∪Aj |

|Ci,j |
︸ ︷︷ ︸

≈0

≈ 2,

and

0 ≤ LGIoU (Aj , Ak) = 2−
|Aj ∩Ak|

|Aj ∪Ak|
−

|Aj ∪Ak|

|Cj,k|
≤ 2,

Therefore, the triangle inequality holds true in this case:

LGIoU (Ai, Ak) ≤ LGIoU (Ai, Aj) + LGIoU (Aj , Ak).

Case 4: For general case, we check the correctness of the proposition by evaluating many random samples, detailed next.

Proof 7b (random sampling):

Over 106 iterations we sample 3 convex hulls, denoted at Hi, Hj , Hk, each composed of 4 points, where each point is

represented by its (x, y) coordinate. For each pair of elements in this randomly sampled set of 3 convex hulls, we compute

LGIoU , e.g. LGIoU (Hi, Hk), LGIoU (Hi, Hj), and LGIoU (Hj , Hk). To compute the intersection for each pair of convex

hulls, as required to compute LGIoU , we check for intersection points between any pair of the line segments that compose

each convex hull. Each point on both convex hulls in the pair is checked to determine if the point is enclosed in the other

convex hull. Intersection of two hulls is calculated by forming a new convex hull: the tightest convex hull of the enclosed

points and the intersection points as determined above. C is calculated by forming the tightest convex hull of all points. The

following condition is then tested: LGIoU (Hi, Hk) ≤ LGIoU (Hi, Hj)+LGIoU (Hj , Hk). Throughout all samples the above

condition held.

4. Gradient of LGIoU

In this section we provide the gradient of LGIoU . Following the derivation of LGIoU we include the derivations necessary

to account for different bounding box representations.

4.1. Notation

We follow the same notation as the main text. Given bounding box B, where Bg denotes ground truth and Bp denotes

a prediction, B = (x1, y1, x2, y2) and (x1, y1) is the upper left corner of the bounding box and (x2, y2) is the lower right

corner of the bounding box, or in vector form:

B =







x1

y1
x2

y2







(1)



4.2. LGIoU Gradient

Let ∂GIoU
∂x1∂y1∂x2∂y2

denote the derivative of GIoU with respect to x1, y1, x2, y2 or in the general case, simply: ∂GIoU
∂B

.

Let ∇x1,y1,x2,y2
indicate the gradient function with respect to x1, y1, x2, y2 or generally, ∇B .

Intersection I between prediction bounding box Bp and ground truth bounding box Bg is given by:

xI
1 = max(x̂p

1, x
g
1), xI

2 = min(x̂p
2, x

g
2),

yI1 = max(ŷp1 , y
g
1), yI2 = min(ŷp2 , y

g
2)

(2)

Ih = (yI2 − yI1 )

Iw = (xI
2 − xI

1 )
(3)

I =

{

Ih × Iw if Ih > 0, Ih > 0

0 otherwise.
(4)

∇BI is given by:

∂I

∂x1
=

(

Iw

)(

0

)

+

{

−1 x̂
p
1 > x

g
1

0 otherwise

(

Ih

)

(5)

∂I

∂y1
=

{

−1 ŷ
p
1 > y

g
1

0 otherwise

(

Iw

)

+

(

Ih

)(

0

)

(6)

∂I

∂x2
=

(

Iw

)(

0

)

+

{

1 x̂
p
2 < x

g
2

0 otherwise

(

Ih

)

(7)

∂I

∂y2
=

{

1 ŷ
p
2 < y

g
2

0 otherwise

(

Iw

)

+

(

Ih

)(

0

)

(8)

Recall the smallest enclosing box Bc is given by:

xc
1 = min(x̂p

1, x
g
1), xc

2 = max(x̂p
2, x

g
2),

yc1 = min(ŷp1 , y
g
1), yc2 = max(ŷp2 , y

g
2)

(9)

Area of Bc, called Ac is given by:

Ac
h = (yc2 − yc1)

Ac
w = (xc

2 − xc
1)

(10)

Ac = Ac
h ×Ac

w (11)

∇BA
c is given by:

∂Ac

∂x1
=

(

Ac
w

)(

0

)

+

{

−1 x̂
p
1 < x

g
1

0 otherwise

(

Ac
h

)

(12)

∂Ac

∂y1
=

{

−1 ŷ
p
1 < y

g
1

0 otherwise

(

Ac
w

)

+

(

Ac
h

)(

0

)

(13)

∂Ac

∂x2
=

(

Ac
w

)(

0

)

+

{

1 x̂
p
2 > x

g
2

0 otherwise

(

Ac
h

)

(14)

∂Ac

∂y2
=

{

1 ŷ
p
2 > y

g
2

0 otherwise

(

Ac
w

)

+

(

Ac
h

)(

0

)

(15)



Recall:

GIoU =
I

U
−

Ac − U

Ac
(16)

Therefore:

∂GIoU

dx
=

{
U(∇BI)−I(∇BU)

U2 if Ih > 0, Iw > 0

0 otherwise.
−

Ac(∇BU)− U(∇BA
c)

Ac2
(17)

Where:

∇BU = ∇BA
g +∇BA

p −∇BI (18)

Recall that prediction area is given by:

Ap = (ŷp2 − ŷ
p
1)× (x̂p

2 − x̂
p
1) (19)

Ground truth area is given by:

Ag = (ŷg2 − ŷ
g
1)× (x̂g

2 − x̂
g
1) (20)

Generally, the element-wise derivative for area A (Ag or Ap), for point (x̂, ŷ) [(x̂g ,ŷg) or (x̂p, ŷp)], is given by:

∂A

x1
= (ŷ2 − ŷ1)(−1) + (0)(x̂2 − x̂1) = ŷ1 − ŷ2 (21)

∂A

y1
= (ŷ2 − ŷ1)(0) + (−1)(x̂2 − x̂1) = x̂1 − x̂2 (22)

∂A

x2
= (ŷ2 − ŷ1)(1) + (0)(x̂2 − x̂1) = ŷ2 − ŷ1 (23)

∂A

y2
= (ŷ2 − ŷ1)(0) + (1)(x̂2 − x1) = x̂2 − x̂1 (24)

Therefore:








∂GIoU
dx1

∂GIoU
dy1

∂GIoU
dx2

∂GIoU
dy2







=












U( ∂I
∂x1

)−I( ∂Ap

∂x1
− ∂I

∂x1
)

U2 −
Ac( ∂Ap

∂x1
− ∂I

∂x1
)−U( ∂Ac

∂x1
)

Ac
2

U( ∂I
∂y1

)−I( ∂Ap

∂y1
− ∂I

∂y1
)

U2 −
Ac( ∂Ap

∂y1
− ∂I

∂y1
)−U( ∂Ac

∂y1
)

Ac
2

U( ∂I
∂x2

)−I( ∂Ap

∂x2
− ∂I

∂x2
)

U2 −
Ac( ∂Ap

∂x2
− ∂I

∂x2
)−U( ∂Ac

∂x2
)

Ac
2

U( ∂I
∂y2

)−I( ∂Ap

∂y2
− ∂I

∂y2
)

U2 −
Ac( ∂Ap

∂y2
− ∂I

∂y2
)−U( ∂Ac

∂y2
)

Ac
2












(25)

4.3. Handling Different Output Representations

In cases where the predicted bounding box Bp, is represented by the top left and bottom right coordinates and it is not

guaranteed to adhere to x
p
2 > x

p
1 and y

p
2 > y

p
1 , we apply:

x̂
p
1 = min(xp

1, x
p
2), x̂

p
2 = max(xp

1, x
p
2),

ŷ
p
1 = min(yp1 , y

p
2), ŷ

p
2 = max(yp1 , y

p
2)

(26)

In these cases, we use the following partial derivatives:

∂x̂
p
1

∂x
p
1

=

{

1 x
p
1 < x

p
2

0 otherwise

∂x̂
p
1

∂x
p
2

=

{

1 x
p
1 > x

p
2

0 otherwise
(27)

∂x̂
p
2

∂x
p
1

=

{

1 x
p
1 > x

p
2

0 otherwise

∂x̂
p
2

∂x
p
2

=

{

1 x
p
1 < x

p
2

0 otherwise
(28)



∂ŷ
p
1

∂y
p
1

=

{

1 y
p
1 < y

p
2

0 otherwise

∂ŷ
p
1

∂y
p
2

=

{

1 y
p
1 > y

p
2

0 otherwise
(29)

∂ŷ
p
2

∂y
p
1

=

{

1 y
p
1 > y

p
2

0 otherwise

∂ŷ
p
2

∂y
p
2

=

{

1 y
p
1 < y

p
2

0 otherwise
(30)

Alternatively, for networks that represent bounding boxes with (x, y, w, h) where (x, y) is the coordinate of the top-left

corner and w, h are width and height respectively, the following additional step during back propagation may be necessary –

a coordinate space transformation from the network’s representation to the B = (x1, y1, x2, y2) representation. This is given

by:

T (x, y, w, h) =







xx − xw

2
xy −

xh

2
xx + xw

2
xy +

xh

2






=







x1

y1
x2

y2







(31)

The Jacobian of T is given by:

J(x, y, w, h) =







1 0 − 1
2 0

0 1 0 − 1
2

1 0 1
2 0

0 1 0 1
2







(32)

Transpose of the Jacobian is given by:

JT (x, y, w, h) =







1 0 1 0
0 1 0 1
− 1

2 0 1
2 0

0 − 1
2 0 1

2







(33)

Therefore:







∂x

∂y

∂w

∂h






=







1 0 1 0
0 1 0 1
− 1

2 0 1
2 0

0 − 1
2 0 1

2














∂GIoU
∂x1

∂GIoU
∂y1

∂GIoU
∂x2

∂GIoU
∂y2








(34)

5. Further qualitative results

In this section we show further qualitative results. In general we believe that qualitative results are well correlated with our

quantitative results showing that LGIoU is superior to LIoU which is superior to MSE loss for localization. However, in some

cases we see that LGIoU and LIoU are not able to perform classification as well as the baseline losses due to sub-optimal

normalization between the new localization loss and classification loss.

Figure 1. Example results from COCO validation using Mask R-CNN [2] trained using (left to right) LGIoU , LIoU , ℓ1-smooth losses.

Ground truth is shown by a solid line and predictions are represented with dashed lines.

Fig. 2 shows a result from both Mask R-CNN [2] and YOLO v3 [6] where GIoU exhibits the strong localization accuracy,

but has a decreased classification score. Also, notice the localization accuracy vs classification score between YOLO v3 and



Mask R-CNN across all losses. As noted below, some dashed outlines are almost transparent since the opacity of these

dashed line is set to the network output score for a given prediction bounding box. Solid white lines indicate ground truth.

Figure 2. Example results from COCO validation for both YOLO v3 [6] (left) and Mask R-CNN [2] (right) trained using (left to right):

LGIoU , LIoU and MSE for YOLO v3 and LGIoU , LIoU and ℓ1-smooth for Mask R-CNN. Ground truth is shown by a solid white line and

predictions are represented with a dashed line. The opacity of the prediction corresponds to the confidence of the prediction.

Fig. 3 shows two cases where GIoU exhibits increased localization accuracy, however classification is not quite as high

as the baseline. Also, notice the trade-off between classification and localization that has occurred in the LIoU samples.

Figure 3. Example results from COCO validation using YOLO v3 [6] trained using (left to right) LGIoU , LIoU , and MSE losses. Ground

truth is shown by a solid line and predictions are represented with dashed lines.

Fig. 4 shows two results from YOLO v3 [6] in cluttered scenes where LGIoU performs much better on average in local-

ization while maintaining good classification. Opacity of the dashed line for a prediction is set to the network output score.

Solid white lines indicate ground truth.

Figure 4. Example results from COCO validation using YOLO v3 [6] trained using (left to right) LGIoU , LIoU , and MSE losses. Ground

truth is shown by a solid white line and predictions are represented with dashed lines. Opacity of the dashed line corresponds with the

network’s score for the given bounding box.
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