
Supplementary Material to: Variational Autoencoders Pursue PCA Directions
(by Accident)

The supplementary information is structured as follows.
We start with a remark on Table 1 and then provide the
proofs in Section A.1. Section B reports the details of the
experiments followed by additional experiments in Section
C.

Remark on Table 1

Some dataset-architecture combinations listed in Table 2
are omitted for the following reasons.

On the one hand, calculating the Disentanglement Score
for MNIST and fMNIST does not make sense, as the gener-
ating factors are not given (the one categorical label cannot
serve as replacement). Consequently, as the values of β
are chosen according to this score, we do not report β-VAE
numbers for these datasets. On the other hand, for either
synthetic task, the regular VAE vastly overprunes, see Fig-
ure S1, and the values become meaningless.

A. Proofs
A.1. Proof of Theorem 2

Proof strategy: For part (b), we aim to derive a lower
bound on the objective (18), that is independent from the
optimization variables σ2

j (xi) and Vi. Moreover, we show
that this lower bound is tight for some specific choices of
σ2
j (xi) and Vi, i.e. the global optima. For these choices, all
Ji will have orthogonal columns.

The strategy for part (a) is to show that whenever σ2
j (xi)

and Vi do not induce a global optimum, we can find a small
perturbation that decreases the objective function. Thereby
showing that local minima do not exist.

Technical lemmas: We begin with introducing a few use-
ful statements. First is the inequality between arithmetic
and geometric mean; a consequence of Jensen’s inequality.

Lemma S1 (AM-GM inequality). Let a1, . . . , aN be non-
negative real numbers. Then

1

N

N∑
i=1

ai ≥

(
N∏
i=1

ai

)1/N

(S1)

with equality occuring if and only if a1 = a2 = · · · = an.

The second bound to be used is the classical Hadamard’s
inequality.

Lemma S2 (Hadamard’s inequality [4]). LetM ∈ Rk×k be
non-singular matrix with column vectors c1, . . . , ck. Then

k∏
i=1

‖ci‖ ≥ | detM | (S2)

with equality if and only if the vectors c1, . . . , ck are pair-
wise orthogonal.

And finally a simple lemma for characterizing matrices
with orthogonal columns.

Lemma S3 (Column orthogonality). Let M ∈ Rn×d be a
matrix and let M = UΣV > be its singular value decompo-
sition. Then the following statements are equivalent:

(a) The columns of M are (pairwise) orthogonal.

(b) The matrix M>M is diagonal.

(c) The columns of ΣV > are (pairwise) orthogonal.

Proof. The equivalence of (a) and (b) is immediate. For
equivalence of (a) and (c) it suffices to notice that if we set
M ′ = ΣV >, then

M ′>M ′ = V Σ>ΣV > = M>M. (S3)

The equivalence of (a) and (b) now implies that M has or-
thogonal columns if and only if M ′ does.

Initial considerations: First, without loss of generality,
we will ignore all passive latent variables (in the sense of
Definition 1). Formally speaking, we will restrict to the case
when the local decoder mappings Ji are non-degenerate
(i.e. have non-zero singular values). Now d denotes the di-
mensionality of the latent space with d = |Va|.

Next, we simplify the loss L≈KL, Equation 10. Up to
additive and multiplicative constants, this loss can be, for a
fixed sample xi ∈ X , written as

‖µ(xi)‖2 +

d∑
j=1

− log(σ2
j (xi)). (S4)
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In the optimization problem (18, 19) the values µ(xi) can
only be affected via applying an orthogonal transformation
Vi. But such transformation are norm-preserving (isomet-
ric) and hence the values ‖µ(xi)‖2 do not change in the
optimization. As a result, we can restate the constraint (19)
as

∑
xi∈X

d∑
j=1

− log(σ2
j (xi)) = C1 (S5)

for some constant C1.

Proof of Theorem 2(b): Here, we explain how Theorem
2(b) follows from the following two propositions.

Proposition S1. For a fixed sample xi ∈ X let us denote
by c1, . . . , cd the column vectors of Ji. Then

E
ε(xi)
‖Jiε(xi)‖2 ≥ d

 d∏
j=1

‖cj‖2σ2
j (xi)

1/d

(S6)

with equality if and only if ‖cj‖2σ2
j (xi) = ‖ck‖2σ2

k(xi) for
every j, k ∈ {1, . . . , d}.

Proposition S2. Let M ∈ Rn×d, where d < n, be a matrix
with column vectors c1, . . . , cd and nonzero singular values
s1, . . . , sd. Then

d∏
j=1

‖cj‖ ≥ det†(M), (S7)

where by det†(M) we denote the product of the singular
values of M . Equality occurs if and only if c1, . . . , cd are
pairwise orthogonal.

First, Proposition S2 allows making further estimates in
the inequality from Proposition S1. Indeed, we get

E
ε(xi)
‖Jiε(xi)‖2 ≥ d

(det†(Ji)
)2 d∏

j=1

σ2
j (xi)

1/d

(S8)

and after applying the (monotonous) log function we are left
with

log E
ε(xi)
‖Jiε(xi)‖2 ≥ (S9)

log(d) +
2

d
log(det†(Ji)) +

1

d

d∑
j=1

log(σ2
j (xi)).

(S10)

Finally, we sum over the samples xi ∈ X and simplify via
(S5) as∑

xi∈X

log E
ε(xi)
‖Jiε(xi)‖2 ≥

N log(d)− C1

d
+

2

d

∑
xi∈X

log(det†(Ji)). (S11)

The right-hand side of this inequality is independent from
the values of σ2

j (xi), as well as from the orthogonal matri-
ces Vi, since these do not influence the singular values of
any Ji.

Moreover, it is possible to make inequality (S11) tight
(i.e. reach the global minimum), by setting σ2

j (xi) as hinted
by Proposition S1 and by choosing the matrices Vi such that
every Ji has orthogonal columns (this is clearly possible as
seen in Proposition 1).

This yields the desired description of the global minima
of (18).

Proof of Proposition S1: We further denote by r1, . . . , rn
the row vectors of Ji, and by ar,c the element of Ji at r-th
row and c-th column. With sampling ε(xi) according to

ε(xi) ∼ N
(
0,diag σ2(xi)

)
, (S12)

we begin simplifying the objective (18) with

E
ε(xi)
‖Jiε(xi)‖2 = E

ε(xi)

n∑
k=1

‖r>k ε(xi)‖2 (S13)

=

n∑
k=1

E
ε(xi)
‖r>k ε(xi)‖2. (S14)

Now, as the samples ε(xi) are zero mean, we can further
write

n∑
k=1

E
ε(xi)
‖r>k ε(xi)‖2 =

n∑
k=1

var(r>k ε(xi)). (S15)

Now we use the fact that for uncorrelated random variables
A and B we have var(A + cB) = varA + c2 varB. This
allows to expand the variance of the inner product as

var(r>k ε(xi)) = var

 d∑
j=1

ak,jεj(x
i)

 (S16)

=

d∑
j=1

a2k,j var εj(x
i) =

d∑
j=1

a2k,jσ
2
j (xi).



Now, we can regroup the terms via

n∑
k=1

var(r>k ε(xi)) =

n∑
k=1

d∑
j=1

a2k,jσ
2
j (xi)

=

d∑
j=1

n∑
k=1

a2k,jσ
2
j (xi)

=

d∑
j=1

‖cj‖2σ2
j (xi). (S17)

All in all, we obtain

E
ε(xi)
‖Jiε(xi)‖2 =

d∑
j=1

‖cj‖2σ2
j (xi). (S18)

from which the desired inequality follows via setting aj =
‖cj‖2σ2

j (xi) for j = 1, . . . , d in Lemma S1. Indeed, then
we have

d∑
j=1

‖cj‖2σ2
j (xi) ≥ d

 d∏
j=1

‖cj‖2σ2
j (xi)

1/d

(S19)

as required.

Proof of Proposition S2: As the first step, we show that
both sides of the desired inequality are invariant to multi-
plying the matrixM from the left with an orthogonal matrix
U ∈ Rn×n.

For the right-hand side, this is clear as the singular val-
ues of UM are identical to those of M . As for the left-
hand side, we first need to realize that the vectors cj are the
images of the canonical basis vectors ej , i.e. cj = Mej
for j = 1, . . . , d. But since U is an isometry, we have
‖UMej‖ = ‖Mej‖ = ‖cj‖ for every j, and hence also
the column norms are intact by prepending U to M .

This allows us to restrict to matrices M for which the
SVD has a simplified form M = ΣV >. Next, let us denote
by Σd×d the d× d top-left submatrix of Σ. Note that Σd×d
contains all nonzero elements of Σ. As a result, the matrix
M ′ = Σd×dV

> contains precisely the nonzero rows of the
matrix M . This implies

M>M = M ′>M ′. (S20)

In particular, the column vectors c′j of M ′ have the same
norms as those of M . Now we can write

d∏
j=1

‖cj‖ =

d∏
j=1

‖c′j‖ ≥ |det(M ′)| = det†(M), (S21)

where the inequality follows from Lemma S2 applied to
nonsingular matrix M ′. Equality in Lemma S2 occurs pre-
cisely if the columns of M ′ are orthogonal. However, ac-
cording to Lemma S3 and (S20), it also follows that the

columns of M ′ are orthogonal if and only if the columns of
M are. Note that Lemma S3(c) is needed for covering the
reduction performed in the first two paragraphs.

Proof of Theorem 2(a): We show the nonexistence of lo-
cal minima as follows. For any values of σ2

j (xi) and Vi that
do not minimize the objective function (18), we find a small
perturbation that improves this objective.

All estimates involved in establishing inequality (S11)
rely on either Lemma S1 or Lemma S2, where in both cases,
the right-hand side was kept fixed. We show that both of
these inequalities can be tightened in such fashion by small
perturbations in their parameters.

Lemma S4 (Locally improving AM-GM). For any non-
negative values a1, . . . , aN for which

1

N

N∑
i=1

ai >

(
N∏
i=1

ai

)1/N

(S22)

there exists a small perturbation a′i of ai for i = 1, . . . , N
such that

1

N

N∑
i=1

ai >
1

N

N∑
i=1

a′i ≥ (S23)

(
N∏
i=1

a′i

)1/N

=

(
N∏
i=1

ai

)1/N

(S24)

Proof. Since (S22) is a sharp inequality, we have ai > aj
for some i 6= j. Then setting a′i = ai/(1 + δ), a′j = aj(1 +
δ), and a′k = ak otherwise, will do the trick. Indeed, we
have aiaj = a′ia

′
j as well as ai + aj > a′i + a′j for small

enough δ. This ensures both S23 and S24.

An analogous statement for Lemma S2 has the following
form.

Lemma S5 (Locally improving Hadamard’s inequality).
Let M ∈ Rk×k be a non-singular matrix with SVD M =
UΣV >, and column vectors c1, . . . , ck, for which

k∏
i=1

‖ci‖ > |detM |. (S25)

Then there exists an orthogonal matrix V ′, a small pertur-
bation of V , such that if we denote by c′1, . . . , c′k the column
vectors of M ′ = UΣV ′>, we have

k∏
i=1

‖ci‖ >
k∏
i=1

‖c′i‖. (S26)



Proof. We proceed by induction on k. For k = 2, it can
be verified directly that for some small δ (in absolute value)
setting V ′ = V Rδ , where Rδ is a 2D rotation matrix by
angle δ, achieves what is required.

For the general case, the sharp inequality (S25) implies
that c>i cj 6= 0 for some pair of i 6= j. Without loss of
generality, let i = 1, j = 2. In such case, we consider
V ′ = V R2D

δ , where

R2D
δ =

(
Rδ

Ik−2

)
(S27)

is a block diagonal matrix, in which Rδ is again a 2 × 2
rotation matrix. By design, we have ci = c′i for i > 2. This,
along with the fact thatU can be set to Ik (isometry does not
influence either side of (S25)), allows for a full reduction to
the discussed two-dimensional case.

It is easy to see that the performed perturbations contin-
uously translate into perturbations of the parameters σ2

j (xi)
and Vi in estimates (S19) and (S21). Consequently, any
non-optimal values of σ2

j (xi) and Vi can be locally im-
proved. This concludes the proof.

A.2. Rotational invariances

Let us start by fleshing out the common elements of the
proofs of Propositions 2 and 3. In both cases, the encoder
and decoder mappings Encϕ,U , Decθ,U induce joint distri-
butions pU (x, z), qU (x, z) described as

pU (x, z) = p(z)p(x | U>z) (S28)

qU (x, z) = q(x)q(U>z | x) (S29)

Lemma S6. For every xi ∈ X we have p(xi) = pU (xi).

Proof. We simply compute

pU (xi) =

∫
pU (xi, z) dz

=

∫
p(z)p(xi | U>z) dz

=

∫
p(Uz)p(xi | z) dz

=

∫
p(z)p(xi | z) dz = p(xi),

where in the third equality we used the Change of Vari-
able Theorem to substitute Uz for z (keep in mind that
|det(U)| = 1 as U is an orthogonal matrix). In the
fourth equality, we used the rotational symmetry of the prior
p(z).

Proof of Proposition 2. This immediately follows from
Lemma S6.

Proof of Proposition 3. We utilize the full identity from
ELBO derivation. For fixed xi ∈ X we have [2]

ELBO = DKL(qU (z | xi) ‖ pU (z | xi)) + log pU (xi)
(S30)

In order to prove invariance of ELBO to the choice of U , it
suffices to prove invariance of the right-hand side of (S30).
Due to Proposition (3) we only need to focus on the KL
term. Similarly as in the proof of Lemma S6, we calculate

DKL(qU (z | xi) ‖ pU (z | xi))

=

∫
qU (z | xi) log

qU (z | xi)
pU (z | xi)

dz

=

∫
qU (z | xi) log

qU (z | xi) · pU (xi)

pU (z) · pU (xi | z)
dz

(3)
=

∫
q(U>z | xi) log

q(U>z | xi) · p(xi)
p(z) · p(xi | U>z)

dz

(4)
=

∫
q(z | xi) log

q(z | xi) · p(xi)
p(Uz) · p(xi | z)

dz

(5)
=

∫
q(z | xi) log

q(z | xi) · p(xi)
p(z) · p(xi | z)

dz

=

∫
q(z | xi) log

q(z | xi)
p(z | xi)

dz

= DKL(q(z | xi) ‖ p(z | xi)),

where we again used the Change of Variable Theorem in
equality (4), rotational symmetry of p(z) in equality (5),
and Lemma S6 in equality (3).

A.3. Other proofs

Proof of Proposition 1. Recall from Lemma S3 that col-
umn orthogonality of M is equivalent to M>M being a
diagonal matrix.
(b) ⇒ (a): Let M = UΣV > where |V | is a permutation
matrix. Then

M>M = V Σ>U>UΣV > = V Σ′V > (S31)

where Σ′ = Σ>Σ is a diagonal matrix. But then V Σ′V >

only permutes the diagonal entries of Σ′ (and possibly flips
their signs). In particular, V Σ′V > is also diagonal.
(a)⇒ (b): Let again M = UΣV > be some SVD of M and
assume M>M = D for some diagonal matrix D. Since
M has d distinct nonzero singular values, M>M has d dis-
tinct nonzero eigenvalues (diagonal elements). Moreover,
these eigenvalues are precisely the squares of the singular
values captured by Σ. Next, if we denote by P the permu-
tation matrix for which PDP−1 has decreasing diagonal
elements, we can write

PDP−1 = Σ>Σ (S32)



Then using (S32) and the SVD of M similarly as in (S31),
we obtain

D = M>M = V Σ>ΣV > = V PDP−1V >. (S33)

Further, the resulting identity (V P )D = D(V P ) implies
that columns of V P are eigenvectors ofD, i.e. the canonical
basis vectors. Since V P is additionally orthogonal, these
eigenvectors are normalized. It follows that |V P | is a per-
mutation matrix and the conclusion follows.

Proof of Proposition 4. First, note that for any random
variable X ∈ Rk with EX = µ and a constant b ∈ Rk, the
following identity holds

E ‖X− b‖2 = E ‖X− µ‖2 + ‖µ− b‖2. (S34)

In our case, we set X = Decθ(Encϕ(xi)), the unbiasedness
assumption translates to EX = Decθ(µ(xi)), and finally
we set b = xi.

The identity we obtain, is exactly what was required to
prove.

B. Experimental details

B.1. Disentanglement Score

As introduced in the paper, for disentangled represen-
tations, single latent variables should be sensitive to indi-
vidual generating factors and insensitive to all others. To
quantify this behavior, for each generating factor wi, all la-
tent variables are evaluated for their sensitivity to wi. The
sensitivity difference between the two most responsive vari-
ables then reflects both desired properties; the sensitivity of
the associated best matching latent variable and also the in-
sensitivity of all others. A set of quantities capturing disen-
tanglement can therefore be described as

Disent. =
1

Nlabels

N∑
i=1

(
Ai,m(i) −Ai,s(i)

Mi

)
(S35)

for m(i) = arg max
l

(Ai,l) (S36)

for s(i) = arg max
k 6=m(i)

(Ai,k) , (S37)

whereAi,j is some sort of sensitivity measure of latent vari-
able zj with respect to the generating factor wi and Mi is a
normalization constant, ensuring the summands fall into the
interval (0, 1).

The recently proposed Mutual Information Gap
(MIG) [1] uses the Mutual Information as a measure of
how the latent variables depend on the generating factors.
For the normalisation, the entropy of the generating factor

is used.

Ai,j = MI(wi, zj) (S38)
Mi = H(wi) (S39)

For discrete generating factors {wi}, the normalization with
the entropy H(wi), binds the MIG to the (0, 1) interval, as
expected. For continuous generating factors on the other
side, this does not hold. In fact, differential entropy can be
zero or even negative and no good normalization is possible.

To treat this shortcoming, we introduce the slightly mod-
ified Disentanglement score such that it comprises continu-
ous and discrete variables alike. Rather than using mutual
information measurements, we employ powerful nonlinear
regressors and classifiers for the two different classes of la-
tent variables. The predictability of a generating factor from
a given latent coordinate indirectly reflects how much infor-
mation the two share.

Accordingly, we define the Disentanglement score as
in Equation S35 by defining Ai,j as the prediction perfor-
mance of the regressor/classifier for predicting generating
factor wi from the latent coordinate zj . The normalization
factor is then the performance of the best constant classi-
fier/regressor. In case of regression with mean square error,
this is simply the standard deviation of the generative factor.

More precisely,

Ai,j =

{√
var(wi)−

√
msezj→wi , for regression

accuracyzj→wi
, for classification

(S40)

and

Mi =

{√
var(wi), for regression.

accuracyconst
zj→wi

, for classification.

We used the SciPy implementation of a k-nearest-
neighbors classifier and regressor with default settings (e.g.
k = 5) to measure the Disentanglement Score. The re-
gressor/classifier was trained on 80% of the test data and
evaluated on the remaining 20%.

B.2. DtO via Integer Programming

The Distance to Orthogonality (DtO) describes the
Frobenius norm of the difference between a matrix V and
its closest signed permutation matrix P (V ). Using mixed-
integer linear programming (MILP) formulation, we find
the closest permutation matrix as the optimum P ∗ of the



Table S1. Overview over the used datasets and network architectures. The nonlinearities are only applied in the hidden layers. Biases are
used for all datasets.

Optimizer
(LR)

Architecture Latent Dim. Epochs β

dSprites AdaGrad Enc: 1200− 1200 (Relu) 5 50 4
(10−2) Dec: 1200− 1200− 1200 (Tanh)

Synth. Lin. Adam Enc: No hidden Layers (Lin) 2 600 10−4

(10−3) Dec: No hidden Layers (Lin)
Synth. Non-Lin. Adam Enc: 60− 40− 20 (Tanh) 2 600 10−3

(10−3) Dec: 60− 40− 20 (Tanh)
MNIST AdaGrad Enc: 400 (Relu) 6 400 1

(10−2) Dec: 500− 500 (Tanh)
fMNIST AdaGrad Enc: 400 (Relu) 6 500 1

(10−2) Dec: 500− 500 (Tanh)
CelebA Adam Conv/Deconv: [number of kernels, kernel size, stride] 32 50 4

(10−4) Enc: [[32, 4, 2], [32, 4, 2], [64, 4, 2], [64, 4, 2]]
(Relu)
Dec: [[64], [64, 4, 2], [32, 4, 2], [32, 4, 2], [3, 4, 2]]
(Relu), first layer is connecting MLP

following optimization problem

min
P

∑
i,j

|Vi,j − Pi,j | (S41)

s.t. Pi,j ∈ {−1, 0, 1} ∀ (i, j)∑
i

|Pi,j | = 1 ∀ j∑
j

|Pi,j | = 1 ∀ i.

Producing a clean MILP formulation, with purely linear ob-
jective and binary integer values, can be achieved with a
standard technique; introducing new variables. In particu-
lar, we set

Pi,j = P+
i,j − P

−
i,j (S42)

for P+
i,j , P

−
i,j ∈ {0, 1} ∀ (i, j)

and introduce (continuous) variables for the differences
Vi,j − Pi,j

Vi,j − Pi,j ≤ Di,j ∀ (i, j) (S43)
Pi,j − Vi,j ≤ Di,j ∀ (i, j).

The final formulation then is

min
P

∑
i,j

Di,j (S44)

s.t. (P+
i,j − P

−
i,j)− Vi,j ≤ Di,j ∀ (i, j)

Vi,j − (P+
i,j − P

−
i,j) ≤ Di,j ∀ (i, j)∑

i

(
P+
i,j + P−i,j

)
= 1 ∀ j∑

j

(
P+
i,j + P−i,j

)
= 1 ∀ i.

B.3. β-VAE with Full Covariance Matrix

In the derivation of the VAE loss function, the approxi-
mate posterior is set to be a multivariate normal distribution
with a diagonal covariance matrix. The claim of the paper
is that this diagonalization is responsible for the orthogonal-
ization. As one of the control experiments in Section 5 we
also implemented VAE with a full covariance matrix.

Two issues now need to be addressed; computing KL di-
vergence in closed form and adapting the reparametrization
trick. Regarding the former, the sought identity is

DKL(N (µ,Σ) ‖ N (0, Ik)) = (S45)
1

2

(
‖µ‖2 + tr (Σ)− log det Σ− k

)
. (S46)

As for the reparametrization trick, if ε ∼ N (0, Ik), it is
easy to check that

µ+ Σ1/2ε ∼ N (µ,Σ), (S47)

where Σ = Σ1/2 ·
(
Σ1/2

)>
is the unique Cholesky decom-

position of the positive definite matrix Σ.
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Figure S1. The β hyper-parameter in the β-VAE allows to trade-off reconstruction error and the KL loss such that the desired amount
of disentanglement is achieved. The plots show the Disentanglement Score (top) and the DtO (bottom) for dSprites (left) and synthetic
datasets (right). The dashed lines indicate the parameter chosen for the experiments.

B.4. Network Details and Training

Table S1 contains the training parameters used for the
different architectures. The listed latent dimension is cho-
sen to be the number of independent generating factors, if
applicable, and chosen large enough to ensure decent recon-
struction loss on all architectures.

All reported numbers are calculated using a previously
unseen test dataset. To facilitate this, we split the whole
datasets randomly into three parts for training, evaluation
and test (containing 80 %, 10 % and 10 % of all samples
respectively). During development, we use the evaluation
dataset, for the final reports we use the test dataset.

B.5. Synthetic Datasets

The linear synthetic dataset is generated with a transfor-
mation flin : R2 → R3, mapping a unit square V = [0, 1]2

to a 3-dimensional space. The transformation can be de-
composed into:

1. stretching along one axis by a fixed factor of 2,

2. trivial embedding into R3,

3. rotation of 45◦ along the line containing the vector
(1,−1, 1).

For the non-linear dataset, the transformation
fnon−lin : R2 → R6 is realized by a random initial-
ization of a MLP with one hidden layer (width 10), biases
and tanh nonlinearitites.

Both datasets consist of 50000 samples.

C. Additional Experiments
C.1. Dependence of Disentanglement Score and

DtO on β

The choice of β depends on the achievable Disentangle-
ment Score. Figure S1 shows a more thorough analysis of
the dependence of both the Disentanglement Score and the



DtO. For too small values of β, the effect of the KL term
(and thus the orthogonalization) is negligible. In the other
extreme case, too large values values of β result in over-
pruning, such that the number of active latent coordinates
drops below the number of generating factors.

C.2. Degenerate case

Figure S2. For strong degeneracy, e.g. in the synthetic dataset with
the two generating factors w1 and w2 on equal, uniform scale
(top), the linear β-VAE generates arbitrarily rotated latent repre-
sentations (bottom) here for the linear synthetic dataset.

Proposition 1 insists that the locally linearized decoder
have distinct singular values, otherwise orthogonality of

Table S2. Overview of Disentanglement Score and DtO for dif-
ferent ratios of importance between the generating factors for the
Synth. Lin. task. A ratio of 1.2 means one generating factor is
scaled by 1.2.

Ratio 1.0 1.2 1.5

Disent. 0.51± 0.28 0.76± 0.25 0.98± 0.06
DtO 0.49± 0.32 0.20± 0.24 0.01± 0.06

the column vectors does not translate into preserving axes.
Here, we design an experiment showing, that this condition
is also relevant in practice.

The dataset in question will be a version of the linear
synthetic task where the generating factors have the same
scaling, as visualized in the upper plot of Figure S2. Note
that any linear encoder applying a simple rotation has both
orthogonal columns and equal singular values. But it does
not respect the alignment of the original square, as it does
not meet the assumptions of Proposition 1.

Behavior of the β-VAE with a linear encoder/decoder
network is consistent with this. The bottom part of Fig-
ure S2 shows β-VAE latent representations of four random
restarts; they expose random alignments. The same effect
results in high variances for both the Disentanglement Score
and the DtO, as shown in Table S2.

This degeneracy also occurs for PCA. It is easy to check
that any projection of a unit square on a line has equal vari-
ance. Hence the greedy PCA algorithm has no preference
over which alignment to choose, and the practical choice of
alignment is implementation dependent.

This insight reinforces our point that β-VAE (just like
PCA) looks for sources of variance rather than for statistical
independence.

We can also see in Table S2, that the degeneracy dis-
appears even for small rescaling of the ground truth fac-
tors. Since β-VAE promotes normalized latent representa-
tions (zero mean, unit variance), the singular values will no
longer be equal and the right alignment is found. The same
is true for PCA.

Average

Background Hair color
(long)
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Hair style

Hair color
(short)

Gender

Background Hair color
(long)
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Figure S3. For strong degeneracy, e.g. in the synthetic dataset with
the two generating factors w1 and w2 on equal, uniform scale
(top), the linear β-VAE generates arbitrarily rotated latent repre-
sentations (bottom) here for the linear synthetic dataset.



C.3. Non-Linear VAE Eigenfaces

In order to highlight the connection with PCA, we use β-
VAE to produce a non-linear version of the classical eigen-
faces [5] on the CelebA dataset [3]. Fig S3 shows a discrete
latent traversal.

Starting from the latent representation zmean of the
mean face (over 300 randomly selected datapoints) we feed
{zmean±αei} through the decoder, where ei are the canon-
ical base vectors. Particularly, we chose i covering the first
5 latent coordinates, sorted by the mean σj . The parameter
α = 2.5 was empirically chosen to be on near the tails of
the distribution over zk.

We can see that unlike classical eigenfaces that mostly
reflect photometric properties, the ‘nonlinear eigenfaces”
capture also semantic features of the data. Note also that the
ordering of the ‘principal components’ by the mean values
of σj is naturally justified by our work. As was illustrated
in Sec. 4.2 of the paper, the first β-VAE ‘principle compo-
nents’ also focus on characteristics with high impact on the
reconstruction loss (i.e. capture the most variance),

Details about the architecture used are listed in Tab. S1.
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