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1. Implementation details
Re-clustering every T epochs: As pointed out in

Sec. 3.3 of the main submission, we update the data partition-
ing by re-clustering every T epochs using the full embedding
space, composed by concatenating the embeddings produced
by the individual learners. To maintain consistency, each
learner is associated to the cluster, which is most similar to
the cluster assigned to this learner in the previous iteration
(i.e. in epoch t−T ). This amounts to solving a linear assign-
ment problem where similarity between clusters is measured
in terms of IoU of points belonging to the clusters.

The source code is available at https://bit.ly/
dcesml.

2. Additional ablation study
As discussed in the main paper, our approach facilitates

the learning of decorrelated representations of individual
learners. To show this, we conduct an additional ablation
study where we evaluate the performance of individual learn-
ers and compute the correlation between their embeddings.
In the same way as in the main paper, we use the Stanford
Online Products dataset [3] and train our model with Margin
loss [7], K = 8 and embedding size d = 128.

We computed Recall@1 on the entire test set for every in-
dividual learner, each of which operates in a 16-dimensional
embedding subspace. However, the baseline model was
trained with only one learner operating in the embedding
space with 128 dimensions. Hence, for comparison with the
learners of our model, we split the embedding of the baseline
model on 8 non-overlapping slices of 16 dimensions each
and evaluate them separately. In Tab. S1 we can see that each
individual learner trained using our approach is weaker in
average than slices of the baseline model embedding. How-
ever, when we concatenate the embeddings of all individual
learners together they yield significantly higher Recall@1
than the baseline model (3.2% higher in absolute values). In
Fig. S2 we also show how the performance changes when we
use together only 1, 2, . . . 7 or all 8 learners for evaluation:
one learner corresponds to 16 out of 128 dimensions, two

Figure S1: Representative images for the learners and their
corresponding subspaces. The model was trained on the
Stanford Online Products dataset with K = 8. Best viewed
zoomed in.

learners to 32 out of 128 dimensions and so on; 8 learners
correspond to all 128 dimensions. We observe a larger gain
compared to the baseline when more learners are used to-
gether for evaluation. This shows that the learners trained by
our approach learn complementary features.

Moreover, in Tab. S1 we directly computed the correlation
coefficient between the embedding produced by different
learners. The correlation coefficient between the learners in
our model is lower than between the slices of the baseline
model embedding. This evidence supports our claim that
the learners proposed by our approach learn less correlated
features and, hence, utilize the embedding space in a more
efficient way.

To visualize what is captured in each embedding sub-
space, in Fig. S1 we show representative images for different
learners. Every row shows 10 query images, which are the
easiest in terms of recall for one learner (R@1 = 1) but ex-
tremely difficult (R@30 = 0) for any other learner. We can
see that every subspace has its own abstract ”specialization”.
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Baseline Ours Emb. dimensions
Learner 1 37.0 29.6 1..16
Learner 2 37.0 29.7 17..32
Learner 3 36.5 29.5 33..48
Learner 4 36.5 29.4 49..64
Learner 5 36.3 29.1 65..80
Learner 6 37.4 29.7 81..96
Learner 7 36.7 29.4 97..112
Learner 8 37.1 29.9 113..128
Mean 36.8 29.5 -
All together (↑) 72.7 75.9 1..128
Corr. coeff. (↓) 0.0602 0.0498 -

Table S1: Evaluation of the individual learners. Re-
call@1 for every individual learner on the entire test set
of Stanford Online Products [3]. The last column shows the
indices of the corresponding dimensions of the embedding
space assigned to the learners. The individual learners of our
model yield significantly higher Recall@1 than the baseline
model when they are concatenated and evaluated all together,
since they learn less correlated representations.

The 1st focuses on the electrical appliances, the 2nd – on
furniture, the 3rd – on plates and mugs, etc.

Recall@k 1 5 10 mAP
HAP2S P [8] 84.5 - - 69.7
PSE ** [4] 87.7 94.5 96.8 69.0
HA-CNN [2] 91.2 - - 75.7
DGS [5] 92.7 96.9 98.1 82.5
DNN+CRF [1] 93.5 97.7 - 81.6
MGN ** [6] 95.7 - - 86.9
Margin baseline* [7] 98.2 99.3 99.3 87.9
Ours (Margin) 98.9 99.5 99.7 88.8

Table S2: Recall@k for k = 1, 5, 10 and mean average pre-
cision (mAP) on Market-1501 [9] with single-query mode. *
denotes our own implementation based on ResNet-50 with
d = 128. ** denotes methods that use ResNet-50 as back-
bone.

3. Additional quantitative evaluation on per-
son re-identification

In this section, we additionally evaluate our approach and
compare to the state-of-the-art methods on Market-1501 [9]
dataset for person re-identification.

Market-1501 [9] contains 32, 668 images of 1, 501 iden-
tities captured by six cameras in front of a supermarket. The
1, 501 identities are divided into a training set consisting of
12, 936 images of 751 identities and a testing set containing
the other 19, 732 images of 750 identities. The query set
contains 3, 368 images with each identity having at most
6 queries. For evaluation, we follow the standard protocol
of [9] and report the mean average precision (mAP) and
Recall@1, Recall@5 and Recall@10. In Tab. S2 we demon-
strate the comparison of our approach to other methods,
where we can see the superior performance of the proposed
approach.
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Figure S2: Evaluation of the individual learners. We trained our model with K = 8 learners and embedding size d = 128
on the Stanford Online Products dataset [3]. The plots show the the Recall@k score when we use only the first m out of 128
dimensions of the embedding layer (m = {16, 32, . . . , 128}) for evaluation. Adding another 16 dimensions corresponds to
using one more learner fm/16 during the evaluation of our model. In case of the baseline model we do not have any learners,
but for a fair comparison we also use only the first m dimensions of the embedding layer. We see a higher performance of our
approach compared to the baseline when more dimensions are used together, which shows that the individual learners in our
model produce less correlated embeddings.
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