
Efficient Parameter-free Clustering Using First Neighbor Relations
Supplementary Material

M. Saquib Sarfraz1,2, Vivek Sharma1, Rainer Stiefelhagen1

1Karlsruhe Institute of Technology
2Daimler TSS, Germany

{firstname.lastname}@kit.edu

1. Appendix

1.1. Datasets Detail

We have used CNN features for STL-10, BBT/Buffy
and MNIST datasets. Specifically, we use ResNet50 pre-
trained on ImageNet for STL-10, and pretrained VGG2-
Face ResNet50 model features [1] for BBTs01, BFs05. On
MNIST datasets, we show clustering results both on raw
pixels and trained CNN features. Since the clustering al-
gorithms performance varies with varying feature dimen-
sions, we have used both 4096 and 256-dimesional features
for MNIST to have this diversity of feature dimensions.
We use [4] CNN features (4096-dim) for MNIST 10k and
MNIST 70k, while for MNIST 8M we train a two layer
MLP with 512 and 256 neurons with 60% data used for
training. Here, the last 256-dimensional layer is used as the
feature extractor, MNIST 8M CNN. We also evaluate FINCH
on MNIST raw pixel features with 784 (i.e., 28 × 28) di-
mensions, MNIST 8M PIXELS and MNIST 70k PIXELS.

1.2. Face Clustering- State-of-the-art Comparison
on BBTs01, BFs05 and Accio Datasets

Here, first we report the pairwise F-measure performance
on the ground-truth (true) number of clusters (i.e. 5 for

ACC P R F
Method BFs05e02 BBTs01e01 Accio, #C=40

ULDML [2] 41.62 57.00 − − −
HMRF [10] 50.30 60.00 27.2 12.8 17.4
WBSLRR [11] 62.76 72.00 29.6 15.3 20.2
JFAC [13] 92.13 − 71.1 35.2 47.1
Imp-Triplet [12] − 96.00 − − −
VDF [6] 87.46 89.62 − − −
TSiam [7] 92.46 98.58 76.3 36.2 49.1
SSiam [7] 90.87 99.04 77.7 37.1 50.2

FINCH 92.73 99.16 73.30 71.11 72.19

Table 1. SOTA comparison on face clustering.

BBTs01 (season 1, episodes 1 to 6) and 6 for BFs05 (sea-
son 1, episodes 1 to 6)) using the steps described in Algo-
rithm 2. FINCH obtains a pairwise F-measure of 97.42%
and 94.02% respectively. In comparison, the reported pair-
wise F-measure of the recent work by Jin et al. [5] for
BBTs01 and BFs05 are 78.2% and 62.99% respectively.

In addition to BFs05 (season 5, episodes 1 to 6) and
BBTs01 (season 1, episodes 1 to 6), we also report the
individual performances on the popularly used episodes of
BFs05 and BBTs01, these are BFs05e02 (season 5, episodes
2) and BBTs01e01 (season 1, episodes 1). BBTs01e01 has
41,220 frames, and BFs05e02 has 39,263 frames. In Table 1,
we compare the performance of FINCH with the current
state-of-the-art algorithms on BBTs01e01 and BFs05e02.
FINCH estimates 7 clusters for BFs05e02, and is brought
down to ground-truth number of 6 clusters using Algorithm 2,
while for BBTs01e01 FINCH estimated exactly 5 clusters
which is also the true number of clusters.

We also include FINCH results on Accio dataset [3]
(Harry Potter movie series with a large number of dark
scenes) with 36 named characters and 166885 faces/samples
to cluster. The largest to smallest cluster ratios of Accio
are very skewed: 30.65% and 0.06%. The performance on
Accio is measured with B-Cube precision, recall and F-score
on #clusters=40 as in the compared methods.

Note that, FINCH has simply clustered the extracted
VGG2 feature vectors for the frames, without any data spe-
cific feature training/transfer and without exploiting any
form of video level constraints as used in the compared
method: video-level constraints [2], video editing style [8],
dynamic clustering constraints in CNNs via MRF model-
ing [13], triplet loss based CNN training using must-link
and must-not-link constraints obtained from video-level
constraints [12], Siamese feature transfer/training [7] us-
ing track-level constraints (TSIAM) and a self-supervised
transfer (SSIAM) on the extracted VGG2 feature vectors.

1



Steps/Partitions MICE PROTEIN REUTERS HAR STL-10 MNIST 10k MNIST 70K BBTs01 BFs05 MNIST 8M CNN MNIST 8M PIXELS

1077 10k 10299 13k 10k 70k 199346 206254 8.1M 8.1M

1 351 1837 2465 2061 1699 11493 27294 29150 2015305 1845149
- 99.7214 94.36 96.7667 95.9462 99.25 99.7243 98.4053 95.8561 99.9999 99.9999

2 106 220 369 177 310 1891 6067 6830 694525 691696
- 96.9359 89.39 92.776 94.9846 99.18 99.68 98.3285 95.6137 99.997 99.9725

3 24 24 88 37 65 357 1406 1753 161371 175426
- 64.624 82.2 86.5521 94.7846 99.18 99.6729 98.2819 95.0396 99.9816 98.6474

4 8 4 18 10 17 75 251 355 33217 25609
- 51.2535 66.14 74.4441 85.2846 99.18 99.6729 98.0918 94.0888 99.951 94.3231

5 4 - 6 2 10 17 36 50 6945 4085
- 26.9266 - 60.2389 20 99.18 99.6729 97.9413 94.0748 99.9067 93.1139

6 3 - 2 - - 10 6 7 1362 789
- 15.506 - 35.5957 - - 99.6729 97.9413 94.0748 99.8833 92.2973

7 - - - - - - 2 2 262 177
- - - - - - - 49.7778 54.6646 99.8762 90.3298

8 - - - - - - - - 53 43
- - - - - - - - - 99.8762 83.359

9 - - - - - - - - 13 11
- - - - - - - - - 99.8762 66.6879

10 - - - - - - - - 4 -
- - - - - - - - - 41.1708 -

Table 2. FINCH steps run for all used datasets. Total number of clusters in each partition along with its respective accuracy as measured by
Clustering Accuracy (ACC), each row is represented as (#clusters

ACC ).

1.3. Partitions for each dataset

Table 2 shows the total FINCH steps run for all used
datasets. Each step produces a partition of data with shown
number of clusters in each. The clustering accuracy (ACC)
at each step is reported that demonstrate the quality of the
merges and the clusters obtained. As can be seen, despite
the varying nature/distribution and dimensionality of data,
FINCH is able to recover the ground-truth or a very close
partition in all cases.

1.4. Details for baselines

We have tried different parameters for the baselines, and
where applicable used the recommended parameters (by re-
spective authors), to report their best NMI scores. As an ex-
ample, Table 3 shows the impact of changing the preference
parameter of Affinity prop (AP) on two datasets. As shown,
on preference=-100 AP estimates ground truth 8 clusters
on mice-protein data, but the performance is worst, while
the same preference value on MNIST-10k data produces
far more clusters than groundtruth while also lower NMI
score. The hyper-parameters do not generalize on different
data. This also motivates why a parameter-free clustering
algorithm is needed.

For AP, SC, BR and kmeans++ we use the implemen-
tation available in the scikit-learn package. For RO, we
use the implementation available in OpenBR framework

Affinity Propagation (AP): Preference
Dataset Reported -10 -50 -100 FINCH True #C

Mice Protein 59.10 57.63 44.09 37.93 51.64
Estim. #C 67 48 12 8 8 8

MNIST 10k 69.97 58.02 63.97 67.13 97.55
Estim. #C 116 1260 304 178 10 10

Table 3. Example: Impact of varying preference parameter of AP.

http://openbiometrics.org/. For HAC we use
the implementation provided by Matlab. For JP, we use the
implementation available from [9]. For RCC, we use the
python implementation recommended by the authors. Sim-
ilarly for SSC and MV-LRSSC we have used the Matlab
implementations provided by the respective authors. Table 4
summarizes the used parameters for the baselines.

References
[1] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and An-

drew Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In FG, 2018.

[2] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia
Schmid. Unsupervised Metric Learning for Face Identifi-
cation in TV Video. In ICCV, 2011.

[3] Esam Ghaleb, Makarand Tapaswi, Ziad Al-Halah, Hazim Ke-
mal Ekenel, and Rainer Stiefelhagen. Accio: A data set for
face track retrieval in movies across age. In Proceedings

http://openbiometrics.org/


Algorithm Parameter settings

AP Preference = median of similarities, damping factor = 0.5, max iter=200, convergence iter=15
JP # neighbors=10, min similarity to cluster =0.2, min similarity as neighbor=0
RO distance threshold t=14, number of top neighbors K=20
RCC maximum total iteration maxiter=100, maximum inner iteration inner iter=4
BR threshold=0.5, branching factor=50
Kmeans init=“k-means++”, n init=10, max iter=300
SC eigen solver=“arpack”, affinity=“nearest neighbors”, n neighbors=10
SSC r=0, affine=false, alpha=20, outlier=true, rho=1
MV-LRSSC mu=0.0001, lambda1=0.9, lambda2=0.1, lambda3=0.7, noisy=true

Table 4. Parameter settings for baselines

of the 5th ACM on International Conference on Multimedia
Retrieval, pages 455–458. ACM, 2015.

[4] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and An-
drew Zisserman. Synthetic data and artificial neural networks
for natural scene text recognition. arXiv:1406.2227, 2014.

[5] SouYoung Jin, Hang Su, Chris Stauffer, and Erik Learned-
Miller. End-to-end Face Detection and Cast Grouping in
Movies using ErdsRnyi Clustering. In ICCV, 2017.

[6] Vivek Sharma, M Saquib Sarfraz, and Rainer Stiefelhagen. A
simple and effective technique for face clustering in tv series.
In CVPR Workshop on Brave New Motion Representations,
2017.

[7] Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and
Rainer Stiefelhagen. Self-supervised learning of face repre-
sentations for video face clustering. In International Confer-
ence on Automatic Face and Gesture Recognition., 2019.

[8] Makarand Tapaswi, Omkar M Parkhi, Esa Rahtu, Eric Som-
merlade, Rainer Stiefelhagen, and Andrew Zisserman. Total
Cluster: A Person Agnostic Clustering Method for Broadcast
Videos. In ICVGIP, 2014.

[9] Ágnes Vathy-Fogarassy and János Abonyi. Graph-based
clustering and data visualization algorithms. Springer, 2013.

[10] Baoyuan Wu, Yifan Zhang, Bao-Gang Hu, and Qiang Ji.
Constrained Clustering and its Application to Face Clustering
in Videos. In CVPR, 2013.

[11] Shijie Xiao, Mingkui Tan, and Dong Xu. Weighted Block-
sparse Low Rank Representation for Face Clustering in
Videos. In ECCV, 2014.

[12] Shun Zhang, Yihong Gong, and Jinjun Wang. Deep Metric
Learning with Improved Triplet Loss for Face Clustering in
Videos. In Pacific Rim Conference on Multimedia, 2016.

[13] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Joint face representation adaptation and clustering in
videos. In ECCV, 2016.


