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Supplementary material
We provide here additional experiment details and qual-

itative results.

A. HF-Net Implementation
A.1. Network Architecture

HF-Net is built on top of a MobileNetV2 [13] encoder
with depth multiplier 0.75. The local heads are identical
to the original SuperPoint [6] and branch off at the layer 7.
The global head is composed of a NetVLAD layer [2] and a
dimensionality reduction, implemented as a multiplication
with a learnable matrix, in order to match the dimension of
the target teacher descriptor. The global head is appended to
the MobileNet layer 18. The detailed architecture is shown
in Figure 1.
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Figure 1. Detail of the HF-Net architecture, consisting of a Mo-
biletNet encoder and three heads predicting a global descriptor, a
dense local descriptor map, and keypoint scores.

A.2. Training Details

The images from both Google Landmarks [11] and
Berkeley Deep Drive [21] are resized to 640×480 and con-
verted to grayscale. We found RGB to be detrimental to the

performance of the local feature heads, most likely because
of the limited bandwidth of the encoder. As photometric
data augmentation, we apply, in a random order, Gaussian
noise, motion blur in random directions, and random bright-
ness and contrast changes.

The losses of the global and local descriptors are the L2
distances with their targets. For the keypoints, we apply the
cross-entropy with the target probabilities (soft labels). We
found hard labels to perform poorly, likely due to their spar-
sity and the smaller size of the student network. The three
losses are aggregated using the multi-task learning scheme
of Kendall et al. [9].

The MobileNet layers are initialized with weights pre-
trained on ImageNet [5]. The network is implemented with
Tensorflow [1] and trained for 85k iterations with the RM-
SProp optimizer [18] and a batch size of 32. We use an
initial learning rate of 10−3, which is successively divided
by ten at iterations 60k and 80k.

B. Local Feature Evaluation

B.1. Setup

The images of both HPatches [3] and SfM [12] datasets
are resized so that their largest dimension is 640 pixels. The
metrics are computed on image pairs and follow the defini-
tions of [6, 12]. A keypoint k1 in an image is deemed correct
if its reprojection k̂1 in a second image lies within a given
distance threshold ε to a second detected keypoint k2. Ad-
ditionally, k1 is matched correctly if it is correct and if k2 is
its nearest neighbor in the descriptor space.

For HPatches, we detect 300 keypoints for both key-
point and descriptor evaluations, and set ε = 3 pixels.
The homography is estimated using the OpenCV function
findHomography and considered accurate if the aver-
age reprojection error of the image corners is lower than
3 pixels. For the SfM dataset, due to the extensive tex-
ture, 1000 keypoints are detected. The keypoint and de-
scriptor metrics use correctness thresholds ε of 3 and 5, re-
spectively. The 6-DoF pose is estimated with the function
solvePnPRansac, and deemed correct if its ground truth
is within distance and orientation thresholds of 3 m and 1◦,
respectively.
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For DoG, Harris [7], and SIFT [10], we use the imple-
mentations of OpenCV. For SuperPoint [6] and LF-Net [12],
we use the implementations provided by the authors. For
NetVLAD, we use the implementation of [4] and the orig-
inal model trained on Pittsburgh30k. Dense descriptors are
obtained by normalizing the feature map conv3_3 before
the ReLU activation. For DOAP [8], we use the trained
model provided by the authors. As we are mostly interested
in dense descriptors for run-time efficiency, we disable the
spatial transformer and enable padding in the last layer, thus
producing a feature map four times smaller than the input
image. We found the model trained on HPatches with spa-
tial transformer to give the best results and thus only eval-
uate DOAP on the SfM dataset. As a post-processing, we
apply Non-Maximum Suppression (NMS) with a radius of 4
to both Harris and SuperPoint. Sparse descriptors are sam-
pled from the dense maps of SuperPoint, NetVLAD, and
DOAP using bilinear interpolation.

B.2. Qualitative Results

We show in Figures 2 and 3 detected keypoints and their
corresponding matches on the HPatches and SfM datasets,
respectively.

C. Large-scale Localization
C.1. Model Quality

Extended statistics of models built with SIFT and HF-
Net for the Aachen Day-Night, RobotCar Seasons, and
CMU Seasons datasets, are provided in Table 1. We also re-
port the track length, i.e. the number of observation per 3D
point, as defined by [16]. The metrics for the CMU dataset
are aggregated over the models of the slices corresponding
to the urban and suburban environments. For SIFT, some
metrics cannot be computed on the CMU model as the key-
points that are not matched were not provided.

Aachen RobotCar CMU
Statistics SIFT HF SIFT HF SIFT HF

# 3D points 1,900k 685k 6,869k 2,525k 961k 553k
# Keypoints per image 10,230 2,576 4,409 970 - 1,446
Ratio of matched keypoints [%] 18.8 33.8 39.4 59.9 - 45.3
Track length 5.85 5.87 5.34 4.71 4.11 4.95

Table 1. Statistics of 3D models built with SIFT and HF-Net.

C.2. Implementation Details

We now provide additional details regarding the imple-
mentation of our hierarchical localization pipeline. For all
datasets, we reduce the dimensionality of the global de-
scriptors predicted by both NetVLAD and HF-Net to 1024
dimensions using PCA, whose parameters are learned on
the reference images, independently for each dataset. A to-
tal of 10 prior frames are retrieved and clustered. Due to

limits on the GPU memory, features are extracted on im-
ages downsampled such that their largest dimension is 960
pixels for Aachen and Robotcar, and 1024 for CMU. For
both SuperPoint and HF-Net, NMS with radius 4 is applied
to the detected keypoints in the query image and 2k of them
are retained. When performing local matching, our modi-
fied ratio test uses a threshold of 0.9. PnP+RANSAC uses a
threshold on the reprojection error of 10 pixels for Aachen,
5 pixels for CMU (due to the lower image size), and 12
pixels for RobotCar (due to the lower keypoint localization
accuracy of SuperPoint and HF-Net). The estimated pose is
deemed correct when the number of inliers is larger than a
threshold, whose value is 12 for Aachen and CMU, and 15
for Robotcar.

C.3. Evaluation Process

The method and baselines introduced in this work are
evaluated on all three datasets by the benchmark’s au-
thors [15], who also generated the plots shown in the main
paper. For Active Search [14], City Scale Localization [17],
DenseVLAD [20], and NetVLAD [2], we use the evaluation
reported in the paper introducing the benchmark.

The evaluation of Semantic Match Consistency [19]
(SMC) is the one reported in the original paper. We do not
directly compare this method to the ones introduced in the
present work, nor to the benchmark baselines, as SMC as-
sumes a known camera height, and, more importantly, relies
on a semantic segmentation CNN which was trained on the
evaluation dataset of RobotCar. We emphasize that our HF-
Net never encountered any test data during training, and that
it was evaluated on the three datasets using the same trained
model.

C.4. Qualitative Results

Visual results of HF-Net on the Aachen Day-Night,
RobotCar Seasons, and CMU Seasons datasets are shown
in Figures 4, 5, and 6, respectively. We additionally show a
comparison with NV+SIFT in Figure 7.
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Figure 2. Qualitative results on the HPatches dataset. Keypoints (green if repeatable, red if not repeatable, blue if not visible in the other
image) and inlier matches are shown for SIFT (left), SuperPoint (center) and HF-Net (right).

Figure 3. Qualitative results on the SfM dataset for SIFT (left), SuperPoint (center) and HF-Net (right).

4



Figure 4. Localization with HF-Net on Aachen night. For each image pair, the left image is the query and the right image is the retrieved
database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries (left), failed queries
due to an incorrect global retrieval (center), and failed queries due to incorrect or insufficient local matches (right).

Figure 5. Localization with HF-Net on RobotCar night and night-rain. For each image pair, the left image is the query and the right
image is the retrieved database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries
(left), failed queries due to an incorrect global retrieval (center), and failed queries due to insufficient local matches (right).
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Figure 6. Localization with HF-Net on CMU suburban. For each image pair, the left image is the query and the right image is the
retrieved database image with the most inlier matches, as returned by PnP+RANSAC. We show challenging successful queries (left), failed
queries due to an incorrect global retrieval (center), and failed queries due to insufficient local matches (right).

Figure 7. Comparison between HF-Net and NV+SIFT on Aachen night, with one query for which HF-Net returns the correct location
but NV+SIFT fails. We show the matches with one retrieved database image, labeled by PnP+RANSAC as inliers (green) and outliers
(red). We show the inliers of HF-Net (left), all the matches of HF-Net (center), and all the matches of NV+SIFT (right). HF-Net generates
significantly fewer matches than SIFT, thus reducing the computational footprint of the local matching. At the same time, more of its
matches are inliers, increasing the robustness of the localization. The higher inlier ratio reduces the number of required RANSAC iterations.
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