
Supplementary Document for:
BAD SLAM: Bundle Adjusted Direct RGB-D SLAM

Thomas Schöps1 Torsten Sattler2 Marc Pollefeys1,3
1Department of Computer Science, ETH Zürich

2Department of Electrical Engineering, Chalmers University of Technology 3Microsoft, Zurich

In this supplementary document, we first present an addi-
tional technical detail of our algorithm, and additional eval-
uation results, which do not fit into the main paper for space
reasons. We then describe how we created our new RGB-
D SLAM benchmark, and the lessons learned while doing
so. This may be helpful for other researchers who plan to
record similar datasets or who want to use the raw data, that
we also plan to publish, to improve upon our calibration.
We also provide a supplementary video which shows our
SLAM system running on several datasets, as well as an
overview of all datasets of our new benchmark.

1. Additional details

Here, we detail the computation of the surfel border
points s1 and s2, which are used for computing the pho-
tometric descriptor, based on a surfel’s position ps, nor-
mal ns, and radius rs. First, taking the cross product of
ns in global space with an arbitrary fixed vector v (e.g.,
(1, 0, 0)T), and scaling it to the surfel’s radius rs gives:
s1 = ps + rs‖ns × v‖−1

2 (ns × v). If ns and v are
nearly parallel, a second arbitrary and fixed vector (e.g.,
(0, 1, 0)T) is used instead. s2 is then obtained from s1 as
s2 = ps + (ns × (s1 − ps)). This choice of s1 and s2

makes the point locations on the surfel, s1−ps and s2−ps,
invariant to surfel position changes, while normal changes
will almost always cause smooth changes.

2. Additional SLAM results

2.1. Quantitative results

In the paper, we use the Absolute Trajectory Error (ATE)
RMSE for all evaluations. In this supplementary docu-
ment, we additionally present results on our new benchmark
for relative translation and rotation evaluation metrics [5].
Both metrics are evaluated over all subsequences for a given
length within a dataset. We use lengths of 0.5, 1.0, 1.5, and
2.0 meters. For the translational error, the translation be-
tween the first and last pose in a subsequence is compared
between the ground truth and estimated trajectory. The er-

ror is computed as the ratio between the translation differ-
ence to the subsequence length, and given in percent. For
the rotational error, analogously the difference in rotation is
computed and given in degrees per meters of subsequence
length. The results are plotted in Fig. 1 (analogously to
Fig. 6 in the paper). It can be seen that the rankings gener-
ally do not depend on the choice of metric, and our method
is best regardless of which metric is used.

2.2. Qualitative results

In Fig. 10 and Fig. 11 (at the end of this document), we
show additional example reconstructions of datasets from
our benchmark (similar to Fig. 1 in the paper), which did
not fit into the paper. These qualitative results give an im-
pression of the variety of our benchmark datasets. Further-
more, they illustrate the reconstruction quality achieved by
BAD SLAM. As in the paper, all sequences are processed
with a surfel sparsity setting of one surfel per 4×4 pixels.
If denser reconstructions are desired, this can be changed to
obtain denser reconstructions than shown here. Since tex-
ture reconstruction was not the focus of our work, we nei-
ther apply white-balancing nor homogenize colors of differ-
ent images observing the same point, apart from averaging.

2.3. Performance

In the ablation study in the paper (Fig. 5, top), a PCG-
based Gauss-Newton solver is included. Analogously to
Fig. 4 in the paper, we show a performance graph for it
in Fig. 4. It uses 10 inner iterations for the PCG step.
Clearly, individual iterations take significantly longer than
with the alternating optimization scheme presented in the
paper. While the quality of the resulting trajectories under
real-time conditions is shown to be similar for our bench-
mark dataset in the paper, bundle adjustment iterations (and
thus trajectory corrections) become infrequent for longer
datasets with the PCG-based Gauss-Newton solver.

Training Test

0 1 2

SE(3) rel. translation (0.5m) [%]

0

20

40

#
su

cc
es

sf
u

l
ru

n
s

0 1 2

SE(3) rel. translation (0.5m) [%]

0

10

20

#
su

cc
es

sf
u

l
ru

n
s

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

0 1 2

SE(3) rel. rotation (0.5m) [degm]

0

20

40

#
su

cc
es

sf
u

l
ru

n
s

0 1 2

SE(3) rel. rotation (0.5m) [degm]

0

10

20
#

su
cc

es
sf

u
l

ru
n

s
BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

0 1 2

SE(3) rel. translation (1m) [%]

0

20

40

#
su

cc
es

sf
u

l
ru

n
s

0 1 2

SE(3) rel. translation (1m) [%]

0

10

20

#
su

cc
es

sf
u

l
ru

n
s

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

0 1 2

SE(3) rel. rotation (1m) [degm]

0

20

40

#
su

cc
es

sf
u

l
ru

n
s

0 1 2

SE(3) rel. rotation (1m) [degm]

0

10

20

#
su

cc
es

sf
u

l
ru

n
s

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

0 1 2

SE(3) rel. translation (1.5m) [%]

0

20

40

#
su

cc
es

sf
u

l
ru

n
s

0 1 2

SE(3) rel. translation (1.5m) [%]

0

10

20

#
su

cc
es

sf
u

l
ru

n
s

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

0 1 2

SE(3) rel. rotation (1.5m) [degm]

0

20

40

#
su

cc
es

sf
u

l
ru

n
s

0 1 2

SE(3) rel. rotation (1.5m) [degm]

0

10

20

#
su

cc
es

sf
u

l
ru

n
s

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

0 1 2

SE(3) rel. translation (2m) [%]

0

20

40

#
su

cc
es

sf
u

l
ru

n
s

0 1 2

SE(3) rel. translation (2m) [%]

0

10

20

#
su

cc
es

sf
u

l
ru

n
s

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

0 1 2

SE(3) rel. rotation (2m) [degm]

0

20

40

#
su

cc
es

sf
u

l
ru

n
s

0 1 2

SE(3) rel. rotation (2m) [degm]

0

10

20

#
su

cc
es

sf
u

l
ru

n
s

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

Figure 1. Evaluation on our benchmark’s training and test datasets.
For a given threshold on the error metric (x-axis), the graphs show
the number of datasets for which the method has a smaller error.

3. Dataset recording

We used a custom RGB-D sensor, built using a multi-
camera system, to record RGB-D SLAM benchmark
datasets. Ground truth was recorded with a Vicon system,
except for a few training datasets for which it was obtained
using Structure-from-Motion, as described in Sec. 5 of our
paper. In this section, we describe the devices we used and
the recording process for our datasets.

Figure 2. Camera rig used to record the benchmark datasets. The
Vicon markers were placed far apart with the aim of increasing
the orientation tracking accuracy. Out of all cameras on the rig,
only the four labeled ones, which are two color and two infrared
cameras, are directly used for the benchmark datasets.

Figure 3. Left: Intel D435 infrared pattern. Right: Asus Xtion in-
frared pattern. Please note: the lack of dots in the center is only an
artefact caused by the external camera used to record these photos
to show the complete extent of the patterns, and does not appear
in pictures recorded by our camera rig. Both images are contrast-
enhanced.

3.1. Devices

Fig. 2 shows a photo of our camera rig. We used a cam-
era system similar to the one described in [6] with up to
eight synchronized cameras. We use four cameras for the
datasets recorded in the Vicon system, and eight cameras
for the datasets with Structure-from-Motion-based ground
truth. As an infrared pattern emitter, we use an Asus Xtion
Live Pro which is additionally mounted on the camera rig.
We also considered using the emitter of the recent Intel
D435 camera, but decided for the Xtion since its pattern
is of higher resolution, as shown in Fig. 3.

Out of the eight synchronized cameras, two color cam-
eras are arranged into a front-facing stereo camera pair. One
camera of this pair provides the RGB component of the
RGB-D camera, and optionally both cameras can be used
for stereo SLAM. Two infrared cameras are arranged into a
second stereo pair directly below the color cameras. These
cameras observe the pattern projected by the Xtion. Their
images are used for stereo matching to compute the depth
component of the RGB-D camera. The remaining four syn-

PCG-based Gauss-Newton solver

20 40 60 80 100 120 140 160
0

5000

10000

T
im

e
[m

s]

Surfel creation

Normals update step

Solver step

Surfel merge and list compaction in loop

Surfel deletion and radius update

Final surfel merge and list compaction

0

100000

200000

300000

S
u

rf
el

s

Surfel count

Alternating optimization

20 40 60 80 100 120 140 160
0

250

500

750

T
im

e
[m

s]

Surfel creation

Geometry optimization

Surfel merge and list compaction in loop

Pose optimization

Surfel deletion and radius update

Final surfel merge and list compaction

0

100000

200000

300000

S
u

rf
el

s

Surfel count

Figure 4. Top: Runtime of our bundle adjustment scheme using a PCG-based Gauss-Newton solver in milliseconds for the dataset shown
in Fig. 1 of the paper (without skipping any BA iterations). Bottom: Corresponding plot of our alternating optimization scheme for
comparison (replicating Fig. 4 of the paper). The number of keyframes is shown on the x-axis. Since we create one keyframe every 10
frames for ca. 27 Hz input, 370 ms of processing time are available for each keyframe; if BA takes longer, iterations are skipped in real-
time mode. The spike in the surfel count corresponds to a loop closure. For the PCG-based solver, the runtime of all other steps becomes
negligible in comparison. At slightly more than 70 keyframes, the increase in runtime is caused by the BA scheme doing more work per
keyframe: It does up to the maximum of ten iterations per keyframe then, while it often converges after one or two iterations before. This is
because the trajectory returns to an already visited place then, such that more adjustment is done compared to the pure exploration before.

Figure 5. Left: Visible-light image of a checkerboard square with
motion blur. Right: Infrared image recorded with the same ex-
posure interval as the left image while the flashing infrared illu-
mination of the Vicon system was active. Instead of continuous
motion blur, two separate flashes are visible that happened during
the exposure interval.

chronized cameras were only used for better localization of
the training datasets for which ground truth was obtained
using Structure-from-Motion, c.f . Sec. 5 of our paper.

We covered the camera rig with several passive marker
balls such that its pose can be tracked by a Vicon motion
capturing system (abbreviated as mocap system in the fol-
lowing). We tried to arrange the markers in a configuration
with as little symmetry as possible to avoid the danger of the
mocap system wrongly associating the markers. We also
placed them such that all axes of rotation should be well
observable and tried to keep occlusion to a minimum.

3.2. Calibration dataset recording

For creating our SLAM benchmark datasets, it was re-
quired to both calibrate the camera intrinsics and relative
transformations within the camera rig, as well as to calibrate
the time offset and relative transformation between the cam-
era rig and the mocap system. In principle, it would be con-

venient to use a given calibration video sequence for both
of these tasks at the same time. This would entail that the
Vicon system must run during this sequence and the cam-
era must be in motion to be able to perform the camera-
Vicon calibration. Unfortunately, the flashing infrared light
used by the mocap system illuminates the scene only dur-
ing certain points in time. Under this type of illumination,
the infrared camera images will not show a continuous ex-
posure but instead snapshots of the scene at the times the
infrared light flashed (see Fig. 5). In our experience, this
is an issue for camera calibration: The features detected in
these infrared images will likely not represent the projec-
tion of the feature at the middle of the exposure time, but
at some other point in time during the exposure. Therefore,
we recorded separate datasets for camera calibration and for
camera-mocap synchronization. For the camera calibration
datasets, we turned off the Vicon system and instead used
sunlight to get a continuous infrared illumination to cali-
brate the infrared cameras. The infrared projector of the
Xtion was also disabled for these datasets1. For the camera-
mocap synchronization, where the infrared light of the Vi-
con system is needed, we simply did not use any of the in-
frared cameras.

3.3. Benchmark dataset recording

Directly before and after each recorded dataset sequence,
we recorded a camera-mocap synchronization sequence.
Afterwards, we additionally recorded a short camera cal-
ibration sequence for which we moved the camera very
slowly. Having synchronization sequences before and af-

1Differing from the depth estimation in the Xtion camera itself, the
Xtion’s infrared projector only plays the role of an external light in our
active stereo setup and is thus irrelevant for its calibration.

ter the dataset recording enables noticing when something
goes wrong during the dataset recording, e.g., the cameras
in the rig move relative to each other. Since we aimed for
a high-quality dataset, we tried to avoid even small per-
turbations in the calibration. Thus we used the final short
camera calibration sequences to refine the relative transfor-
mations between cameras on the rig individually for each
dataset. For these sequences, we moved the camera very
slowly to (mostly) avoid the problem with flashing infrared
lights described in the paragraph above, and discarded im-
ages with too fast estimated camera movement. Alterna-
tively, we could have turned off the Vicon system each time
such a sequence was recorded, or used a tripod to record
static images. The former would have required an exter-
nal infrared light that is well-suited for calibration, i.e., as
homogeneous as possible, which was not available unfortu-
nately, aside from sunlight during certain times of the day.
The latter alternative might increase the danger of chang-
ing the relative camera transformations due to the physical
shock of putting the tripod with the camera on the floor.

4. Dataset processing pipeline

4.1. Image preprocessing

The camera system we used applies little processing to
the images such that certain post-processing steps, which
are often done internally by cameras, had to be done in
software. First, we remove invalid image data at the image
borders, and perform a standard flat-field correction step on
the images to remove fixed pattern noise. For the latter,
we recorded additional calibration datasets: Black record-
ings, for which cameras are supposed to observe no light,
were done by covering the cameras with a cloth, which cov-
ers the cameras well even in bright surroundings. Flat-field
recordings, for which cameras should receive homogeneous
illumination, were done by recording an approximately ho-
mogeneously white wall.

All black images are averaged to obtain a black current
image B. From each homogeneously-illuminated image,
we first subtract the black current image B. For each pixel
in the image, we then average the pixel values in a region
around this pixel and divide this value by the pixel’s inten-
sity to obtain a correction factor indicating the factor that
must be applied to the pixel’s value to (locally) obtain a ho-
mogeneous image. We chose to use a local region instead
of the whole image for this in order to account for the im-
ages not being perfectly homogeneous. As a tradeoff, the
resulting calibration however does not entirely remove vi-
gnetting that may be present in the images. For each pixel,
we average all computed correction factors using the geo-
metric mean (which should be used instead of the arithmetic
mean to average factors), which yields a gain image G. Us-
ing the resulting calibration, images I can be corrected by

Figure 6. The checkerboard used for calibration, with mocap
markers in three corners, as recorded by one of the color cameras.
The checkerboard pattern is equally visible in the infrared images.

first subtracting the black current image from them and then
applying the correction factors to each pixel: G · (I − B).
Qualitatively, we noticed that overall this model seemed to
significantly improve the image quality, while however also
creating a few outliers since the model could not explain the
behavior of all pixels.

After flat-field correction, we replace dead pixels (which
are masked out for flat-field correction) with interpolated
neighbor values. Finally, for RGB images, we apply Debay-
ering of the raw Bayer-pattern images using the Adaptive
Homogeneity-Directed algorithm [8] since it gives good re-
sults (c.f . for example the survey [7]). We do not use any
white-balancing on the images since this would likely make
the SLAM algorithms’ task harder.

4.2. Calibration pattern tracking

We used a calibration pattern for camera calibration (as
opposed to using Structure-from-Motion), since a pattern
allows for accurate and outlier-free feature localization. We
chose to use a checkerboard pattern due to the availability
of a large wooden checkerboard in our lab (shown in Fig. 6).
Due to symmetry, the poses of partial views of a checker-
board may be ambiguous (and depending on the checker-
board’s resolution, even complete views may be ambigu-
ous). At the same time, using partial views is very helpful
for getting sufficient calibration data close to image borders.
Therefore, it was required to track the checkerboard over
time in the calibration videos (instead of only detecting it in
each frame individually) to resolve the ambiguities.

We tracked the checkerboard in each image by first us-
ing a heuristical coarse corner detection and tracking stage,
as well as a corner refinement stage which refines each de-
tected checkerboard corner location individually.

For corner refinement, we used an approach based on
symmetry: For a pixel close to a checkerboard corner, mir-
roring the pixel’s location across the corner location is sup-

posed to yield a pixel with the same checkerboard color
(since camera distortions should be negligible locally). We
thus define a cost function which measures how well this
constraint is fulfilled for all pixels within a local window
around a corner location hypothesis. To increase the robust-
ness against non-uniform lighting, we do not compare pixel
colors directly but compare intensity gradient magnitudes.
This yields the following cost function, depending on the
corner hypothesis location q:

C(q) =
∑

p∈W (q)

(||∇I(q+p)||2−||∇I(q−p)||2)2 . (1)

The intensity gradient image is denoted ∇I (computed by
centered finite differences), and the set of vectors from the
local window’s center to each other pixel within the window
is denoted W (q). We used a square 17 × 17 pixel window
to process our datasets. We optimized the position of each
corner hypothesis by using the Gauss-Newton algorithm on
this cost function. While this produces very good results,
we noticed that it can still break if specular reflections are
visible in the calibration pattern. We tried to avoid these
during recording.

4.3. Camera rig calibration

For camera intrinsics and rig calibration we obtained
an initial estimate with Kalibr [9]. Kalibr employs only
checkerboard detection using OpenCV [3], but not tracking.
We therefore refined the calibration afterwards by optimiz-
ing the reprojection error of the checkerboard corners that
we tracked as described in the previous section.

In this optimization, we found that it was very helpful
to optimize not only the camera intrinsics and rig geome-
try, but also the 3D locations of the checkerboard corner
points, analogously to performing Structure-from-Motion.
This can correct potential inaccuracies in the pattern ge-
ometry and print. It strongly improved the camera-mocap
synchronization trajectory RMSE in a later calibration step
(e.g., in one instance the error was reduced from 3.3mm to
1.0mm).

Another aspect of an accurate calibration is to use a suit-
able camera model to represent the camera intrinsic cali-
bration. We first experimented with the camera model used
by the ETH3D benchmark [10], but found that it did not fit
well to the radial distortion at the image corners. While the
error may be small when measured in pixels of reprojection
error, it can cause large distortions in depth images com-
puted from these images. The initial ETH3D camera model
used four coefficients for radial distortion modeling with a
polynomial of up to 8th degree. Reducing the number of
radial distortion coefficients worsened the results, suggest-
ing that the issue was not numerical instability, but inability
of the model to represent the true distortion. We therefore
employed a ’non-parametric’ camera model which directly

maps from normalized image coordinates (i.e., viewing di-
rections pinhole-projected to the plane at z = 1) to pixel co-
ordinates by bicubic interpolation in a dense vector-valued
grid (with approximately one grid point each 25 pixels in
the image). To optimize this camera model within a rea-
sonable runtime, we wrote a custom Levenberg-Marquardt
optimizer. It is essential to make use of the sparsity pat-
tern of the residuals, which may be hard to model within
optimization frameworks since it potentially changes dur-
ing optimization (because a projected point may move to
different control points for the bicubic interpolation). Our
optimization also makes use of the Schur complement for
matrix solving while delegating the largest matrix multipli-
cation involved in its computation to the GPU.

4.4. Trajectory processing

The raw trajectories recorded by the motion capturing
system contain (weak) noise and outliers. To address the
outliers, we manually inspect the trajectory and delete bad
poses. To address the noise, we apply a smoothing step to
the trajectory: We fit an SE(3)-valued cubic B-spline [11]
to it and re-sample the poses from the spline. Smoothness
is controlled by the number of spline knots per second; we
used 20 to perform only little smoothing.

4.5. Camera-mocap synchronization

Since the cameras and the mocap system use different
clocks, their timestamps need to be aligned. Furthermore,
the transformation between the poses returned by the mocap
system and one of the cameras’ projection centers must be
determined, which is a standard hand-eye calibration prob-
lem. We optimize a cost function with a pose-based residual
for each camera rig pose to determine both unknowns. We
denote the global, fixed coordinate frame of the mocap sys-
tem as G, the coordinate frame of the calibration pattern as
P , the coordinate frame of the camera rig2 which is tracked
by the mocap system as M , and the coordinate frame of
an arbitrarily chosen reference camera as C. A transforma-
tion from a coordinate frame A to frame B is denoted TB

A .
We interchangeably use the term pose for TB

A and TA
B since

TB
A = TA

B
−1.

We estimate transformations TP
C (t) for each image

timestamp t by tracking the pattern in the images recorded
at this point in time (c.f . Sec. 4.2). The images can then be
localized using the previously determined camera calibra-
tion based on the detected checkerboard corners. We also
optimize for a scaling factor SP

C which relates the scale of
the camera poses (which depends on the estimated checker-
board geometry) and the scale of the mocap poses (which
depends on the mocap system’s calibration, which involves
a calibration object of known size). scale(SP

C , T
P
C) denotes

2The mocap system tracks markers placed on the rig and not the rig
cameras themselves.

P

C

M

G
Figure 7. Sketch of the transformations involved in hand-eye cali-
bration and time alignment.

scaling the transformation’s translation component with the
scaling factor. The transformation between the motion cap-
turing system’s origin G and the pose tracked by it, M ,
is parametrized by the estimated time alignment. It con-
sists of a factor t∗ and an offset ∆t such that timestamps
t of the camera can be converted to mocap timestamps as
t′ = t∗ · t + ∆t. In order to obtain a reasonable parameter
scaling for the optimization, we make sure that the origin of
the multiplication is in the center of the trajectory’s duration
by shifting the timestamps accordingly as a pre-processing
step. The transformation TM

G (t′) for a residual is then de-
termined by interpolating the mocap trajectory at time t′,
i.e., the converted timestamp of the rig’s image acquisition.
Putting the pieces together, the optimization cost is defined
as follows, where the colors match those in Fig. 7:∑

t∈Ω

ρHuber(‖log(TC
M · TM

G (t∗ · t+ ∆t)·

TG
P · scale(SP

C , T
P
C (t)))‖2) . (2)

Here, Ω is the set of timestamps for which images were
recorded by the camera rig, and a corresponding mocap
pose has also been recorded. We solve the resulting opti-
mization problem using the Ceres [1] optimization frame-
work. Initial values for the optimization are obtained as
follows.

We roughly estimate the initial time alignment as the
transformation which brings the first and last timestamps of
the camera and mocap poses within the dataset into align-
ment. For determining TC

M , we mark the mocap markers,
which are fixed on the checkerboard (c.f . Fig. 6), in a few
images. The camera poseC in theG coordinate frame (TC

G)
for these images can then be determined from the camera
calibration and the positions of the marked markers3. Using
the initial time alignment, we also obtain rough poses of the
M frame (TM

G) by interpolating the mocap trajectory at the

3This is assuming that the camera in which the markers were marked
is chosen as the coordinate frame C. Otherwise, the rig geometry known
from prior calibration as well as an estimate of the scaling between the
mocap measurements and the rig geometry must be taken into account to
get from the camera’s coordinate frame to frame C.

timestamps of the images. The initial value of TC
M can then

be determined as the difference between theM andC poses
via TC

M = TC
G · TM

G
−1.

Next, we determine an initial estimate for the scaling fac-
tor SP

C by randomly sampling timestamp pairs from within
the trajectory and comparing the distance between the two
TC
G poses (i.e., mocap poses concatenated with TC

M) at these
timestamps to the distance between the two TC

P (localized
camera) poses.

Finally, we initialize TG
P , the pattern’s pose within the

mocap coordinate frame, by concatenating transforms (for
any image): TG

P = TM
G
−1 ·TM

C ·TC
P . We estimate all initial

pose values and the scaling within RANSAC [4] processes
to achieve robustness against outliers.

It should be noted that calibrating TC
M with this ap-

proach requires to rotate the camera during the calibration
sequence. Otherwise, translational changes to TC

M would
not be distinguishable from translational changes to TG

P .
Timestamps for the Vicon poses are derived from Vicon

frame numbers, assuming a constant frame rate. In an ex-
periment, we optimized a separate time offset for each rig
image set, instead of performing the alignment with ∆t, t∗

described above, to determine whether the proposed time
alignment is appropriate. The resulting offsets were fairly
constant without showing any signs of systematic changes
during the dataset, suggesting that the approach is suit-
able. Furthermore, we always run the synchronization on
the combined synchronization dataset parts from before and
after the dataset content recording. If anything with the tim-
ing goes wrong during the dataset it would thus likely be-
come noticeable since it would likely lead to a bad synchro-
nization result, leaving high residuals.

4.6. Depth estimation

In order to provide aligned RGB-D data, we estimate
depth maps from the infrared camera pair and transform
them to match the perspective of one of the color cameras.
For depth estimation, we use a variant of standard Patch-
Match Stereo [2] with a Zero-mean Normalized Cross Cor-
relation (ZNCC) matching cost and a matching window of
11× 11 pixels.

Despite the use of continuous depth estimates for each
pixel, we noticed that the results showed a significant pref-
erence towards quantized depth values. We believe that this
might arise from image intensity peaks, such as the max-
ima of the speckles produced by the infrared emitter. When
bilinearly interpolating within an image, peak values of the
interpolation result are always at pixel centers. If the peak
in the stereo image is lower than the peak in the reference
image, it is thus best aligned with an integer pixel disparity
that exactly aligns the reference pixel center with the stereo
pixel center. We mitigated this to some extent by modi-
fying the sampling of the stereo matching window: In local

Figure 8. Example frame with left infrared image (top left), right
infrared image (top right), right RGB image (bottom left), and es-
timated depth image matching the RGB image (bottom right).

stereo methods, usually pixel centers within a small window
around a pixel in the reference image are used for comput-
ing the stereo matching metric for this pixel. Instead, we
randomly sample subpixel locations within the window to
get a more continuous distribution of samples and thus re-
duce the tendency towards integer disparity alignment of the
window as a whole.

The rest of our stereo pipeline follows standard practice,
c.f . the post-processing in [12]. We refrain from using regu-
larization since we expect getting a good data term from the
active infrared illumination in most cases, and want to avoid
making uncertain guesses in areas of homogeneous image
content. We post-process the depth image with a median fil-
ter to remove some outliers. We then perform outlier filter-
ing by left/right consistency checking, discarding pixels for
which the normal points too far away from the camera, and
discarding small connected components (where pixels can
only count as connected if they have similar depth) in the
depth image. We also discard pixels for which the co-visible
range of the two cameras is small (such that the probability
of the observed surface being within this range is small).
Afterwards, we smooth the depth image with a bilateral fil-
ter and fill small holes.

Finally, we transform the depth image to the viewpoint of
the RGB camera out of the color camera stereo pair which
is closer to the infrared camera used as the stereo refer-
ence image. We create a triangle mesh from the depth map
and render it in the color camera’s viewpoint to perform the
reprojection. This performs correct subpixel handling and
avoids any hole artifacts which pixel-wise forward warping
would create. Fig. 8 shows an example of the stereo in-
puts and resulting depth map together with the correspond-
ing color image.

Since the source and destination camera for the repro-
jection are close together, only very few occlusion artifacts
should be created in this process, which is a common pro-
cessing step for RGB-D cameras. For example, the Asus

Kinect v1 Our depth camera

Figure 9. Visualizations of the depth deformation calibrated
by BAD SLAM for the TUM RGB-D benchmark dataset
long office household (left) and for a dataset from our benchmark
(right). Saturated red (resp. green) means that the depth is dis-
torted by 1 cm at 1 m depth towards (resp. away from) the camera.
White indicates no distortion. While a distortion pattern is present
for the Kinect v1 used by the TUM RGB-D benchmark, there is no
visible distortion for our custom camera. The horizontal line arises
from self-calibration outliers in an area where very few depth mea-
surements are due to little stereo camera overlap. The same occurs
for the Kinect on the left image border.

Xtion uses this step as well, while the involved cameras are
farther apart than the ones in our camera rig.

4.7. Calibration verification

To make sure that all components of the system are well-
calibrated, we imposed thresholds on several calibration
residuals at different steps of the processing pipeline. The
choice of thresholds is based on examining the calibration
residuals for our datasets. We choose the thresholds to pre-
vent avoidable inaccuracies.

We require the initial camera calibration reprojection er-
ror to be below 0.07 pixels on average. The reprojection
error during rig geometry refinement for a dataset must be
below 0.1 pixels on average. We allow for a slightly higher
error here since the infrared lighting is not continuous, c.f .
Sec. 3.2 and Sec. 3.3. The reprojection error for the local-
ization step in the camera-Vicon calibration must be below
0.085 pixels on average. This threshold is chosen between
the first two since this reprojection error depends on both
previous steps, while the lighting is continuous here since
only the color cameras are used. In addition, we compute
the Absolute Trajectory Error (ATE) RMSE, as defined in
the paper, between the mocap trajectory and the final local-
ized camera poses within the camera-Vicon calibration step,
which we require to be at most one millimeter. This error is
influenced by both the camera calibration and the camera-
Vicon calibration. We rejected datasets which do not meet
all of the quality criteria.

We also verified the camera calibration quality with BAD
SLAM’s optional depth deformation self-calibration step
(c.f . Sec. 3.3, paragraph “Camera intrinsics optimization”,
in the paper). Fig. 9 visualizes example results of this cali-

bration for the Kinect v1 and for our depth camera. While
a clear distortion pattern is visible for the Kinect, no distor-
tion is visible for our camera, verifying that our calibration
is good.

References
[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

http://ceres-solver.org. 6
[2] Michael Bleyer, Christoph Rhemann, and Carsten Rother.

PatchMatch stereo - stereo matching with slanted support
windows. In BMVC, 2011. 6

[3] Gary Bradski and Adrian Kaehler. OpenCV. Dr. Dobbs jour-
nal of software tools, 3, 2000. 5

[4] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 6

[5] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The KITTI dataset. IJRR,
32(11):1231–1237, 2013. 1

[6] Pascal Gohl, Dominik Honegger, Sammy Omari, Markus
Achtelik, Marc Pollefeys, and Roland Siegwart. Omnidirec-
tional visual obstacle detection using embedded FPGA. In
IROS, 2015. 2

[7] Bahadir K. Gunturk, John Glotzbach, Yucel Altunbasak,
Ronald W. Schafer, and Russel M. Mersereau. Demosaick-
ing: color filter array interpolation. IEEE Signal processing
magazine, 22(1):44–54, 2005. 4

[8] Keigo Hirakawa and Thomas W. Parks. Adaptive
homogeneity-directed demosaicing algorithm. IEEE Trans-
actions on Image Processing, 14(3):360–369, 2005. 4

[9] Jérôme Maye, Paul Furgale, and Roland Siegwart. Self-
supervised calibration for robotic systems. In Intelligent Ve-
hicles Symposium (IV), 2013. 5

[10] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In CVPR, 2017.
5

[11] Hannes Sommer, James Richard Forbes, Roland Siegwart,
and Paul Furgale. Continuous-time estimation of attitude us-
ing B-splines on Lie groups. Journal of Guidance, Control,
and Dynamics, 39(2):242–261, 2015. 5

[12] Jure Zbontar and Yann LeCun. Stereo matching by training
a convolutional neural network to compare image patches.
Journal of Machine Learning Research, 17(1-32):2, 2016. 7

http://ceres-solver.org

Figure 10. Example models and trajectories (with keyframes) reconstructed in real-time by BAD SLAM on datasets from our benchmark,
showing the variety of datasets and reconstruction quality. Row-wise, left to right: Mannequin (643 frames, ca. 120’000 surfels). Table
with objects (1180 frames, ca. 106’000 surfels). Sofa (976 frames, ca. 118’000 surfels). Sofa in darkness (1605 frames, ca. 210’000
surfels). Textured plane (630 frames, ca. 85’000 surfels). Presents (1554 frames, ca. 104’000 surfels).

Figure 11. Continuation of Fig. 10. Row-wise, left to right: Three views of a reconstructed bike helmet (1704 frames, ca. 82’000 surfels;
The first view is a side view which also shows that the table surface on which the helmet is placed is reconstructed as close to planar. This
demonstrates both a good reconstruction and a high dataset quality.) Three views of a reconstructed drone with markers (1412 frames,
ca. 63’000 surfels). Scene with table, sofa, and a plant (740 frames, ca. 81’000 surfels). Scene with checkerboard, sofa, and an Einstein
head figure (1530 frames, ca. 131’000 surfels). Scene with two tables, in which the room lights are turned on and off during the sequence
(2556 frames, ca. 189’000 surfels). Several objects (771 frames, ca. 121’000 surfels). Outdoors scan of a bench (660 frames, ca. 100’000
surfels).

