Supplemental Material

EventNet: Asynchronous Recursive Event Processing

Table S1: The effects of time window on ETHTED+.
Comparison of performance of our EventNet and PointNet
using different time window is shown.

ETHTED
Object-motion
Window size 7[ms] error [pix/7]

8 3.17

PointNet 16 3.12
32 3.14

8 5.54

EventNet 16 3.94
32 3.11

A. Effects of Time Window 7

In this supplement section we present additional results
from the ETHTED+ dataset that did not fit in the main arti-
cle due to space limitations. In this experiment, we explored
the effects of the time window on estimation accuracy in
the object motion estimation task. We evaluated three dif-
ferent time windows 7 = 8, 16, and 32 ms. The results are
summarized in Table S1. The largest time window (32 ms)
performed the best for our EventNet, but the performance
of PointNet was almost same across the different time win-
dows. The results for EventNet may look counterintuitive,
because the edge often moves tens of pixels within 32 ms
intervals in this dataset, and it may be too large to capture
the motion. This can be partially explained by the fact that
EventNet effectively utilizes the data in a much smaller time
frame than the actual time window because of the decay in
Eq. (3) from the main article. Actually, after the decayed
max operation, events older than 3/4 of the time window
seldomly survived (less than 1%) for 7 = 32 ms. We want
to emphasize that the computational complexity of Event-
Net in inference does not depend on 7.

B. Detailed Training/Testing procedure

In this supplement section, we present detailed proce-
dures for mini-batch construction, training, and testing. For

S1

fixed a time window 7, the number of events within the in-
terval, n(i) varies depending on the event-rate and the net-
work needs to process the variable length data when train-
ing. We used the term batch size B as the number of event
streams that comprise the mini-batch, and we will explicitly
use the term event batch size to refer to B = Y7 n(i),
where n(i) is the number of events within event-stream
indexed with 7. The schematic illustration for batch size
B = 3 is shown in Fig.S1.

As discussed in the main text, batch normalization (BN)
is key to successful training. The batch statistic needs to
be computed for the event-batch dimension. However, most
of the data deep-learning toolbox does not support variable
length data, and they can handle variable length only for
batch dimension. In our implementation, we processed the
variable-length (B) data by maintaining the split of the event
stream’s intermediate feature using the additional variable
splitInf to realize BN for event batch dimension. The
mlpl and mlp2 work for the variable-length () event batch,
and mlp3 works for the fixed-length (B) batch.

ti—n(j)+1 itj

[,

mini-batch (B= 3)

el c Rn(l x4
ez c RM(2)x4
}ei c Rn(fﬁ x4

Figure S1: Mini-batch composition. Using a random sam-
ple event stream e;, a single batch is composed by concate-
nating each stream into batch dimension. See also the ex-
planation on Fig.3 with the main article.

Ee RBx4
8= ZF[

n(1)
splitinf I n(2)
n@3)

Mini-Batch Construction The algorithm for mini-batch
construction from variable-length event streams, e, are
shown in Alg. S1.

Algorithm S1 Sample mini-batch for training

B < number of batch
T < Window size
ts < Start time of training data
te < End time of training data
E]
splitinf < zeros([B])
procedure SAMPLEDATA
for i in RANGE(B) do
t < RAND(ts,te)
e ¢ R"()x4 . GETEVENTSEQ(t)
E < cAT((E,e),dim = 0)
split]nf][i] + n(7)
return E, splitinf

Training The algorithm for training any given event data
E in a batch manner is shown in Alg. S2, where, y(g) and
y(®) represents the global estimation and event-wise esti-
mation, respectively. MAX operates on the dimension spec-
ified by dim, and it is expected to return a feature-wise max
value. Additionally, arg max. K 1) and K@ are size of
intermediate features from mlpl and mlp2, respectively. In
our experiments, it was 64 and 1024.

Algorithm S2 Forward pass when training
Input: E, splitinf
B < number of batch
T < Window size
procedure TRAIN (SET)
E™,T <+ DECOMPOSET(E)
AY — MLPI(ET)
A® — mLp2(AD)
for i in RANGE(B) do
al e RrOXKEY o spLir(AD splitIng,i)
al? e RrOxK? o spLir(A®) splitIng,i)
t; € R**L < spLIT(T, splitInf,i)
valmaz, argmax < MAX(a;,dim = 0)
0 « 27 - (1 — t;[argmazx]) /T
$; + valmax © sin(f) + valmaz © cos(0)
fi + car(s;,aM[-1,1)
y'9 MLP3(s;)
g\ MLPA(f))

return [ygg), vy yj(gg)], [yge), ey yg)]

Testing The inference algorithm for updating global fea-
ture s; given a new (single) event e; is described in Alg.
S3. This process is repeated in event-driven when the sys-

tem receives a new event. The function c is described in Eq.

(3) in the main article. The global estimation yj(-g)

puted as yj(»g) = MLP3(s;) if necessary in an arbitrary rate.

The event-wise estimation y](-e) is similarly computed using

mlp4.

is com-

Algorithm S3 Forward pass when testing (global feature)
Input: Sj—1, €5

T < Window size
procedure TRAIN (SET)
e; ,0t; < DECOMPOSET (e;)
aj < LUT(e;)
sj ¢ MAX(aj,c(s5-1,¢))
return s;

