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A. Stochastic depth as approximate Bayesian inference

ResNet [2] proposes to add skip connections to the network. If 2; denotes the output of the i*" layer and f;(x) represents
a typical convolutional transformation, we can obtain the forward propagation

x; = fi(Xi-1) + Xi-1 (1
and f;(x) is commonly defined by
fi(x) = Wi - o(B(W/ - 0(B(x)))) )

where W; and W, are weight matrices, (-) denotes convolution, and B and ¢ indicates batch normalization and ReL.U
function, respectively.

ResNet with stochastic depth [3] randomly drops a subset of layers and bypass them with short-cut connection. Let
e; € {0,1} denotes a Bernoulli random variable which indicates whether the " residual block is active or not. The forward
propagation is extended from Equation | to

X; = e fi(Xi—1) + Xi—1. 3)

Now we can transform stochasticity from layers to the parameter space as follows:

eifi(xi—1) + xi—1 = €;(W; - o(B(W;" - 0(B'(xi-1))))) + xi—1 4)
= e (Wi-o(BWi' - o(B'(xi-1))))) +%i—1 (5)
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e; = e,‘} since it is a Bernoulli random variable. All stochastic parameters w; = [W;, W, , 7;, fyi/, B, B | in this block drop at
once or not.



B. Approximation of KL-Divergence

Letw € RP, p(w) = N(0,1) and gg(w) = 37, e, (0;, 02I) with a probability vector e = (e, e5) where ¢; €

[0,1]

and Z?:l e; = 1. In our work, 61 denotes the deterministic model parameter [W;, W;', i, 7', Bi, 3i'] and 6 = 0. The

KL-Divergence between gg(w) and p(w) is

KL(go(w)||p(w)) = / 4(w) log f((f)) “

= /CIG(W) logqe(w)dw—/qe(w) log p(w)dw.

We can re-parameterize the first entropy term with w = 6; + o¢; where ¢; ~ N(0,1).

/qg( ) log qg(w dwa&/./\/w 0;,021) log qo (w)dw

= Z €; /N(ei; 0,1)log qp(0; + o€;)dw
i=1

Using o (0; + o€;) ~ e;(2m) ~P/20~ exp(—1€l'e;) for large enough D,

Mw

1
/qe(w) log go (w)dw ~ ez/N €:;0,1) log (ei(QW)’D/QG’lexp(*gefq))dw

=1
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For the second term of the Equation 11,

2
/qg(w) log p(w)dw = Zel/N(w;Hi,afI) log N (w; 0, I)dw
i=1
12
=5 >_ei(00: + Do).
i=1
Then we can approximate
e 1
KL = (6760; + Do —1 — D(1+1log2m)) — =H(e).
(g0/(w)lIp(w ;2 + Do —logo — D(1 +log2r)) — 5 H(e)

For a more general proof, see [1].
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C. Full Experimental Results

We present the full results of Table 1 in the main paper including all scores from individual CI models with different 3’s.
Table A and B show the results on Tiny ImageNet and CIFAR-100, respectively.

Table A. Classification accuracy and calibration scores of the models trained with various architectures on Tiny ImageNet supplementing
Table 1 in the main paper. This table includes results from all models trained with CI loss with different 5’s. In addition to the architectures
presented in Table 1, we also include results from ResNet-18.

Dataset Architecture Method Accuracy[%] ECE MCE NLL Brier Score
Baseline 46.38 0.029 0.086 2.227 0.674
CI[B = 107] 46.48 0.022 0.073 2.216 0.672
CI[3 = 107%] 47.20 0.022 0.060 2.198 0.666
ResNet-18 CI[8 = 0.01] 47.03 0.021 0.157 2.193 0.667
CI[g =0.1] 47.58 0.055 0.111 2.212 0.666
CI[B =1] 47.92 0.241 0380 2.664 0.742
VWCI 48.57 0.026 0.054 2.129 0.651
Baseline 50.82 0.067 0.147 2.050 0.628
CI[B = 1074] 48.89 0.132 0.241 2.257 0.668
CI[8 = 107%] 50.17 0.127 0.227 2.225 0.653
ResNet-34 CI[8 = 0.01] 49.16 0.119 0.219 2.223 0.663
CI[g =0.1] 51.45 0.035 0.171 2.030 0.620
CI[5 = 1] 50.77 0.255 0426 2.614 0.722
VWCI 52.80 0.027 0.076 1.949 0.605
Baseline 46.58 0.346 0.595 4.220 0.844
CI[3 = 107%] 47.26 0.325 0.533 3.878 0.830
Tiny ImageNet CI[8 = 107%] 47.39 0.296 0.536 3.542 0.795
VGG-16 CI[5 = 0.01] 47.11 0.259 0.461 3.046 0.763
CI[B =0.1] 46.94 0.122 0.327 2.812 0.701
CI[5 =1] 45.40 0.130 0.320 2.843 0.717
VWCI 48.03 0.053 0.142 2.373 0.659
Baseline 55.92 0.132 0237 1.974 0.593
CI[3 = 107*] 55.29 0.126 0.208 1.987 0.598
CI[3 = 1073] 55.53 0.120 0.237 1.949 0.592
WideResNet-16-8  CI[8 = 0.01] 56.12 0.116 0.238 1.949 0.590
CI[B = 0.1] 56.38 0.050 0456 1.851 0.572
CI[5 = 1] 55.66 0.161 0.301 2.163 0.619
VWCI 56.66 0.046 0.136 1.866 0.569
Baseline 42.50 0.020 0.154 2.423 0.716
CI[B =107*] 41.20 0.030 0.156 2.489 0.726
CI[B = 107%] 41.21 0.036 0.122 2.514 0.735
DenseNet-40-12 CI[g = 0.01] 40.61 0.025 0.097 2.550 0.739
CI[B = 0.1] 40.67 0.037 0.094 2.501 0.732
CI[g =1] 37.23 0.169 0291 2975 0.810

VWCI 43.25 0.025 0.089 2.410 0.712




Table B. Classification accuracy and calibration scores of models trained with various methods on CIFAR-100 supplementing Table 1 in
the main paper. This table includes results from all models trained with CI loss with different 3’s. In addition to the architectures presented
in Table 1, we also include results from ResNet-18.

Dataset Architecture Method Accuracy[%] ECE MCE NLL Brier Score
Baseline 75.61 0.097 0.233 1.024 0.359
CI[8 =104 75.03 0.104 0901 1.055 0.369
CI[B =1073] 75.51 0.087 0.219 0.986 0.357
ResNet-18 CI[s = 0.01] 74.95 0.069 0.183 0.998 0.358
CI[g = 0.1] 75.94 0.065 0961 1.018 0.349
CI[p =1] 75.61 0.340 0.449 1.492 0.475
VWCI 76.09 0.045 0.128 0.976 0.342
Baseline 77.19 0.109 0.304 1.020 0.345

CI[3 = 1071] 77.38 0.105 0.259 1.000 0.341
CI[5 = 1073] 76.98 0.101 0.261 0.999 0.344

ResNet-34 CI[3 = 0.01] 77.23 0.074 0.206 0.921 0.331
CI[5 = 0.1] 77.66 0.029 0.087 0.953 0.321

CI[g =1] 78.54 0.362 0.442 1.448 0.461

VWCI 78.64 0.034 0.089 0.908 0.310

Baseline 73.78 0.187 0.486 1.667 0.437

CI[B = 1071] 73.19 0.189 0.860 1.679 0.446

CIFAR-100 CI[3 = 1073] 73.70 0.183 0.437 1.585 0.434
VGG-16 CI[3 = 0.01] 73.78 0.163 0425 1.375 0.420
CI[5 = 0.1] 73.68 0.083 0.285 1.289 0.396

CI[g =1] 73.62 0.291 0399 1.676 0.487

VWCI 73.87 0.098 0309 1.277 0.391

Baseline 77.52 0.103 0.278 0.984 0.336

CI[B = 107%] 77.04 0.109 0.280 1.011 0.345
CI[3 = 1073] 77.46 0.104 0272 0974 0.339

WideResNet-16-8  CI[8 = 0.01] 77.53 0.074 0.211 0.931 0.327
CI[8 =0.1] 77.23 0.085 0.239 1.015 0.336

CI[s = 1] 77.48 0.295 0.485 1.378 0.434

VWCI 717.74 0.038 0.101 0.891 0.314

Baseline 65.91 0.074 0.134 1.238 0.463

CI[B = 107%] 66.20 0.064 0.141 1.236 0.463

CI[B = 107?] 63.61 0.086 0.177 1.360 0.496

DenseNet-40-12 CI[8 = 0.01] 65.13 0.052 0.127 1.249 0.471
CI[8 =0.1] 65.86 0.019 0.053 1.206 0.456

CI[g =1] 62.82 0.127 0.193 1.510 0.523

VWCI 67.45 0.026 0.094 1.161 0.439
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