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A. Stochastic depth as approximate Bayesian inference
ResNet [2] proposes to add skip connections to the network. If xi denotes the output of the ith layer and fi(x) represents

a typical convolutional transformation, we can obtain the forward propagation

xi = fi(xi−1) + xi−1 (1)

and fi(x) is commonly defined by

fi(x) =Wi · σ(B(Wi
′ · σ(B(x)))) (2)

where Wi and Wi
′ are weight matrices, (·) denotes convolution, and B and σ indicates batch normalization and ReLU

function, respectively.
ResNet with stochastic depth [3] randomly drops a subset of layers and bypass them with short-cut connection. Let

ei ∈ {0, 1} denotes a Bernoulli random variable which indicates whether the ith residual block is active or not. The forward
propagation is extended from Equation 1 to

xi = eifi(xi−1) + xi−1. (3)

Now we can transform stochasticity from layers to the parameter space as follows:

eifi(xi−1) + xi−1 = ei
(
Wi · σ(B(Wi

′ · σ(B′(xi−1))))
)
+ xi−1 (4)

= e4i
(
Wi · σ(B(Wi

′ · σ(B′(xi−1))))
)
+ xi−1 (5)

= e4i

(
Wi · σ(γi(

Wi
′ · σ(B′(xi−1))− µi

δi
) + βi)

)
+ xi−1 (6)

= eiWi · σ(ei
[
γi
βi

]T [ 1
δi
(eiWi

′ · σ(eiγ′i(xi−1 + β′i))− eiµi)
1

]
) + xi−1 (7)

= W̃i · σ(
[
γ̃i
β̃i

]T [
1
δi
(W̃i

′
· σ(γ̃′i(xi−1 + β̃′i))− eiµi)

1

]
) + xi−1 (8)

= f
W̃i,W̃i

′
,γ̃i,γ̃i

′,β̃i,β̃i
′(xi−1) = fω̃i

(xi−1) (9)

ei = e4i since it is a Bernoulli random variable. All stochastic parameters ω̃i = [W̃i, W̃i

′
, γ̃i, γ̃i

′, β̃i, β̃i
′
] in this block drop at

once or not.

1



B. Approximation of KL-Divergence
Let ω ∈ RD, p(ω) = N (0, I) and qθ(ω) =

∑2
i=1 eiN (θi, σ

2I) with a probability vector e = (e1, e2) where ei ∈ [0, 1]

and
∑2
i=1 ei = 1. In our work, θ1 denotes the deterministic model parameter [Wi,Wi

′, γi, γi
′, βi, βi

′] and θ2 = 0. The
KL-Divergence between qθ(ω) and p(ω) is

KL(qθ(ω)||p(ω)) =
∫
qθ(ω) log

qθ(ω)

p(ω)
dω (10)

=

∫
qθ(ω) log qθ(ω)dω −

∫
qθ(ω) log p(ω)dω. (11)

We can re-parameterize the first entropy term with ω = θi + σεi where εi ∼ N (0, I).∫
qθ(ω) log qθ(ω)dω =

2∑
i=1

ei

∫
N (ω; θi, σ

2
i I) log qθ(ω)dω (12)

=

2∑
i=1

ei

∫
N (εi; 0, I) log qθ(θi + σεi)dω (13)

Using qθ(θi + σεi) ≈ ei(2π)−D/2σ−1 exp(− 1
2ε
T
i εi) for large enough D,

∫
qθ(ω) log qθ(ω)dω ≈

2∑
i=1

ei

∫
N (εi; 0, I) log

(
ei(2π)

−D/2σ−1 exp(−1

2
εTi εi)

)
dω (14)

=

2∑
i=1

ei
2

(
log ei − log σ +

∫
N (εi; 0, I)ε

T
i εidεi −D log 2π

)
(15)

≈
2∑
i=1

ei
2

(
− log σ −D(1 + log 2π)

)
− 1

2
H(e). (16)

For the second term of the Equation 11,∫
qθ(ω) log p(ω)dω =

2∑
i=1

ei

∫
N (ω; θi, σ

2
i I) logN (ω; 0, I)dω (17)

= −1

2

2∑
i=1

ei
(
θTi θi +Dσ

)
. (18)

Then we can approximate

KL(qθ(ω)||p(ω)) ≈
2∑
i=1

ei
2

(
θTi θi +Dσ − log σ −D(1 + log 2π)

)
− 1

2
H(e). (19)

For a more general proof, see [1].



C. Full Experimental Results
We present the full results of Table 1 in the main paper including all scores from individual CI models with different β’s.

Table A and B show the results on Tiny ImageNet and CIFAR-100, respectively.

Table A. Classification accuracy and calibration scores of the models trained with various architectures on Tiny ImageNet supplementing
Table 1 in the main paper. This table includes results from all models trained with CI loss with different β’s. In addition to the architectures
presented in Table 1, we also include results from ResNet-18.

Dataset Architecture Method Accuracy[%] ECE MCE NLL Brier Score

Tiny ImageNet

ResNet-18

Baseline 46.38 0.029 0.086 2.227 0.674
CI[β = 10−4] 46.48 0.022 0.073 2.216 0.672
CI[β = 10−3] 47.20 0.022 0.060 2.198 0.666
CI[β = 0.01] 47.03 0.021 0.157 2.193 0.667
CI[β = 0.1] 47.58 0.055 0.111 2.212 0.666
CI[β = 1] 47.92 0.241 0.380 2.664 0.742

VWCI 48.57 0.026 0.054 2.129 0.651

ResNet-34

Baseline 50.82 0.067 0.147 2.050 0.628
CI[β = 10−4] 48.89 0.132 0.241 2.257 0.668
CI[β = 10−3] 50.17 0.127 0.227 2.225 0.653
CI[β = 0.01] 49.16 0.119 0.219 2.223 0.663
CI[β = 0.1] 51.45 0.035 0.171 2.030 0.620
CI[β = 1] 50.77 0.255 0.426 2.614 0.722

VWCI 52.80 0.027 0.076 1.949 0.605

VGG-16

Baseline 46.58 0.346 0.595 4.220 0.844
CI[β = 10−4] 47.26 0.325 0.533 3.878 0.830
CI[β = 10−3] 47.39 0.296 0.536 3.542 0.795
CI[β = 0.01] 47.11 0.259 0.461 3.046 0.763
CI[β = 0.1] 46.94 0.122 0.327 2.812 0.701
CI[β = 1] 45.40 0.130 0.320 2.843 0.717

VWCI 48.03 0.053 0.142 2.373 0.659

WideResNet-16-8

Baseline 55.92 0.132 0.237 1.974 0.593
CI[β = 10−4] 55.29 0.126 0.208 1.987 0.598
CI[β = 10−3] 55.53 0.120 0.237 1.949 0.592
CI[β = 0.01] 56.12 0.116 0.238 1.949 0.590
CI[β = 0.1] 56.38 0.050 0.456 1.851 0.572
CI[β = 1] 55.66 0.161 0.301 2.163 0.619

VWCI 56.66 0.046 0.136 1.866 0.569

DenseNet-40-12

Baseline 42.50 0.020 0.154 2.423 0.716
CI[β = 10−4] 41.20 0.030 0.156 2.489 0.726
CI[β = 10−3] 41.21 0.036 0.122 2.514 0.735
CI[β = 0.01] 40.61 0.025 0.097 2.550 0.739
CI[β = 0.1] 40.67 0.037 0.094 2.501 0.732
CI[β = 1] 37.23 0.169 0.291 2.975 0.810

VWCI 43.25 0.025 0.089 2.410 0.712



Table B. Classification accuracy and calibration scores of models trained with various methods on CIFAR-100 supplementing Table 1 in
the main paper. This table includes results from all models trained with CI loss with different β’s. In addition to the architectures presented
in Table 1, we also include results from ResNet-18.

Dataset Architecture Method Accuracy[%] ECE MCE NLL Brier Score

CIFAR-100

ResNet-18

Baseline 75.61 0.097 0.233 1.024 0.359
CI[β = 10−4] 75.03 0.104 0.901 1.055 0.369
CI[β = 10−3] 75.51 0.087 0.219 0.986 0.357
CI[β = 0.01] 74.95 0.069 0.183 0.998 0.358
CI[β = 0.1] 75.94 0.065 0.961 1.018 0.349
CI[β = 1] 75.61 0.340 0.449 1.492 0.475

VWCI 76.09 0.045 0.128 0.976 0.342

ResNet-34

Baseline 77.19 0.109 0.304 1.020 0.345
CI[β = 10−4] 77.38 0.105 0.259 1.000 0.341
CI[β = 10−3] 76.98 0.101 0.261 0.999 0.344
CI[β = 0.01] 77.23 0.074 0.206 0.921 0.331
CI[β = 0.1] 77.66 0.029 0.087 0.953 0.321
CI[β = 1] 78.54 0.362 0.442 1.448 0.461

VWCI 78.64 0.034 0.089 0.908 0.310

VGG-16

Baseline 73.78 0.187 0.486 1.667 0.437
CI[β = 10−4] 73.19 0.189 0.860 1.679 0.446
CI[β = 10−3] 73.70 0.183 0.437 1.585 0.434
CI[β = 0.01] 73.78 0.163 0.425 1.375 0.420
CI[β = 0.1] 73.68 0.083 0.285 1.289 0.396
CI[β = 1] 73.62 0.291 0.399 1.676 0.487

VWCI 73.87 0.098 0.309 1.277 0.391

WideResNet-16-8

Baseline 77.52 0.103 0.278 0.984 0.336
CI[β = 10−4] 77.04 0.109 0.280 1.011 0.345
CI[β = 10−3] 77.46 0.104 0.272 0.974 0.339
CI[β = 0.01] 77.53 0.074 0.211 0.931 0.327
CI[β = 0.1] 77.23 0.085 0.239 1.015 0.336
CI[β = 1] 77.48 0.295 0.485 1.378 0.434

VWCI 77.74 0.038 0.101 0.891 0.314

DenseNet-40-12

Baseline 65.91 0.074 0.134 1.238 0.463
CI[β = 10−4] 66.20 0.064 0.141 1.236 0.463
CI[β = 10−3] 63.61 0.086 0.177 1.360 0.496
CI[β = 0.01] 65.13 0.052 0.127 1.249 0.471
CI[β = 0.1] 65.86 0.019 0.053 1.206 0.456
CI[β = 1] 62.82 0.127 0.193 1.510 0.523

VWCI 67.45 0.026 0.094 1.161 0.439
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