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In this supplementary material we present the following
additional details to support the results in the main paper.
Section 1 provides the details about the in-painting network
architecture. Section 2.1 provides a discussion on the co-
occurrence statistics on COCO which influences the clas-
sifier behavior and provides a visualization of robustness
compared to performance. Section 2.2 provides visualiza-
tion of robustness statistics of the segmentation model and
provides ablations to test the importance of removal and in-
painting in data augmentation. Additional qualitative exam-
ples are provided in Figures 3 and 6.

1. Object removal model
To remove objects we use the ground truth segmenta-

tion masks and dilate them by a small factor (5 in the coco
dataset and 7 in the ADE20k dataset). This dilated mask
is multiplied with the input image to remove the target ob-
ject from the image. Then the masked image and the mask
is passed to an in-painting network which fills the masked
area with a plausible background texture. We use the in-
painting architecture and the training procedure proposed
in [1]. Table 1 and 2 present the detailed architecture of the
in-painting network. We will make the code and pre-trained
in-painter models available after the review process.

2. Analyzing robustness to context
In the main paper, we presented our analysis showing

that the classification and segmentation models are sensitive
to context and their predictions are significantly affected
when presented with edited images with context objects re-
moved. In the following sub-sections we present additional
visualizations to support these arguments.

2.1. Image-level Classification

Co-occurrence of objects. An important factor which
causes the image-level classification models to use contex-

Masked Image + mask
Conv 4x4, 64 filters, stride 1
Conv 4x4, 128 filters, stride 2
Conv 4x4, 256 filters, stride 2
Conv 4x4, 512 filters, stride 2

Residual Block, 256 filters
Residual Block, 256 filters
Residual Block, 256 filters
Residual Block, 256 filters
Residual Block, 256 filters
Residual Block, 256 filters

Upsample + Conv 3x3, 256 filters
Upsample + Conv 3x3, 128 filters
Upsample + Conv 3x3, 64 filters

Conv 7x7, 3 filters, stride 1

Table 1: In-painting model architecture starting with input
in the first row to the output layer in the last. Each convo-
lutional layer is followed by a Instance Norm layer and a
Leaky Relu non-linearity with slope 0.1

Conv 3x3, n filters, stride 1
Instance Norm

Leaky Relu (slope 0.1)
Conv 3x3, n filters, stride 1

Instance Norm
Leaky Relu (slope 0.1)

Table 2: Architecture of the residual block with n filters

tual dependencies is the co-occurrence distribution of ob-
jects.Many objects in COCO have a strong co-occurrence
relation with other objects. We quantify this using the nor-
malized co-occurrence counts for each object with others
given by

NC(ci, cj) =
Count(ci ∩ cj)

Count(ci)

. This matrix is visualized in Figure 1. NC(ci, cj) takes
value between 0 and 1 and represents the fraction of images
containing object ci, which also contains object cj . We can
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Figure 1: Co-occurrence ratio, N(ci, cj) of objects on the
COCO dataset

see that, for classes like skateboard, surfboard, tennis racket
and handbag, this ratio is very high (≥ 90%) with the person
class, since these classes often occur with a person holding
or riding them. We also see that the matrix is not symmetric.
This is because, while the skateboard might occur always
with a person, but person class occurs in various contexts
without skateboard. However, for some groups of objects
like mouse, keyboard and monitor, and spoon, fork, and cup
have symmetric co-occurrence relationship.

For many categories, including the cases discussed
above, the co-occurrence ratio is very high (> 60%). This
causes problems for object classifiers of these categories, as
we see in the analysis presented in the main paper. When
a small or difficult to detect object class like mouse or
skateboard, frequently co-occurs with a more easy to de-
tect object class like monitor or person, the classifiers tend
to overuse the contextual relationship for making their clas-
sification decisions instead of visual evidence for the object
of interest. This leads to failures when the context is differ-
ent or the object occurs without context.

Relation of performance to robustness. As discussed
in section 4.1.2 in the main paper, we find that many
well-performing object classes in terms of average preci-
sion (AP) perform poorly in terms of robustness. To show
this we plot the per-class average precision against the
worst-case robustness metric V min(ci) in Figure 2. We can
see for example that classes like mouse, tennis racket, sports
ball, baseball bat and book which have high AP (geq 0.6)
have poor robustness ( V min(ci) ¿ 0.5). In all these cases,
the classifier seems to predominantly use contextual objects
to make their predictions and achieve high average preci-

Figure 2: Comparing class-wise average precision to the %
of violations in changes to context. Many well-performing
categories (high mAP), have high percentage of violations,
including mouse, tennis racket, keyboard, book, and sink.

sion. But they fail when presented with object-without-
context and context-without-object images, usually scoring
the context-without-object images higher. This is also seen
in further visual examples presented in Figure 3. Interest-
ingly visually distinct classes like zebra, elephant, giraffe
achieve high AP, while also being robust as seen in Figure 2
.

2.2. Semantic Segmentation

Visualizing robustness metrics. We compute the robust-
ness metric AR(ci, cj), which measures the ratio of in-
stances when segmentation of class ci is affected by the
removal of class cj , in the ADE20k dataset for the Uper-
net [2] model. This is visualized in Figure 4. The y-axis
the affected class and the x-axis is the removed object class.
We show the rows and the columns which have atleast one
entry > 0.1, for readability. We can see that the AR(ci, cj)
matrix is very sparse, indicating that the segmentation is not
affected by all removal, but of only specific classes. As dis-
cussed in section 4.2.2 of the main paper, we can see that
classes like road and sidewalk depend on the class car. The
sidewalk is also to an extent affected by removal of trees.

To measure the direction of the effect, that is if removal
of context harms or improves the segmentation of a class,
we visualize the average change in IoU in Figure 5. Sur-
prisingly, we find that not all context removal negatively
affects the segmentation. Sometimes removing an object
helps the model to resolve ambiguities and fix the segmen-
tation of other objects. We can see in Figure 5 that while
majority of change is negative, for a few pairs of objects
removal positively affects the IoU. For example removing
lamp class improves the segmentation of ceiling light. Sim-
ilarly, removing armchair improves segmentation of chair



Object without Context Context without Object

Original

Regular S(surfboard) = 2.60E ≥ S(surfboard) = 3.78E
Ours S(surfboard) = 1.81 S(surfboard) = −1.80

Original

Regular S(sink) = −0.74E ≥ S(sink) = 0.60E
Ours S(sink) = −0.01 S(sink) = −0.24

Original

Regular S(ball) = 1.96E ≥ S(ball) = 2.50E
Ours S(ball) = 4.85 S(ball) = −1.24

Original

Regular S(fork) = −2.12E ≥ S(fork) = −1.22E
Ours S(fork) = −3.98 S(fork) = −5.06

Original

Regular S(couch) = 0.63E ≥ S(couch) = 2.09E
Ours S(couch) = 0.73 S(couch) = −0.02

Original

Regular S(car) = −1.13E ≥ S(car) = 0.08E
Ours S(car) = −0.96 S(car) = −2.46

Figure 3: Context violations by image-level classifier. The
primary object is marked with blue box and the context ob-
ject is marked with magenta. The first column shows the
original image, middle shows the image with only object
and the third with only the context. We see that the baseline
classifier depends heavily on the context and always scores
the context only images (last column) higher than the im-
age with only the primary object (middle column). The data
augmented model does better and gets the ordering right.
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Figure 4: Visualizing frequency with which classes are af-
fected by removal of other objects. Y-axis are the affected
objects and the x-axis shows the removed objects

and sofa classes, since the ambiguity is resolved.
Ablation on data augmentation. To understand if removal
and in-painting is really needed for data augmentation, we
conduct two ablation studies which are presented in Table 4.
First we train a version of the baseline model where for
each training sample we randomly select an object and set
its label to ’ignore’. We use the same sampling strategy as
sizebased data augmentation model. Hence this mimics ex-
actly the training procedure in DA (sizebased), except with-
out actually removing the object. Comparing the results of
this model (No removal (sizebased)) to the data augmented
version, we see that removing the object is necessary and
simply ignoring the label leads to a severe drop in perfor-
mance (0.354 vs 0.379). Similarly, in the second experi-
ment we train a model with the object removed but without
in-painting. In this case we can see from Table 4 that, hav-
ing in-painter during augmentation is slightly better than the
model without (0.379 vs 0.375).

Further visual examples of the sensitivity of the baseline
Upernet [2] model to contextual changes and the robustness
provided by data-augmentation is seen in Figure 6.
Confirming the source of sensitivity. Finally we conduct
an additional experiment to verify that the volatility we see
in the output of the segmentation models on edited images
are due to removal of context objects and not due to edit-
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Figure 5: Visualizing the mean change in the IoU of object
segmentation with context object removal. Y-axis are the
affected objects and the x-axis shows the removed objects

ing artifacts. To test this we observe the predictions of the
model on three version of the input image. First is the orig-
inal image. Second is the image with a context object re-
moved. Finally the last image is the false edited image
created by masking and in-painting the input image with
the same mask as the context object, except with a hori-
zontal flip. Thus the context object is not removed in the
false edited image, but a similar shape and size region is re-
moved and in-painted in a different part of the input image.
All three images are fed to the segmentation models and
the output is shown in Figure 7. We can see that the Uper-
net model output is virtually identical on the original image
and the false edited image(third row). However the seg-
mentation on the edited image with context object removed
is significantly different (second row). This indicates that
the segmentation models are not affected by the editing ar-
tifacts but by the removal of the context objects as claimed
in the paper.
Context sensitivity of different architectures.. In order to
understand if the context sensitivity we reported extends to
other network architectures, we tested additional models on
the segmentation task. Table 3 presents context sensitivity
of the sidewalk class to removal of cars, for four new ar-
chitectures (pretrained models obtained from [2]). Despite

Encoder Decoder mIoU Sensitivity of
sidewalk to car

mobilenet conv module [2] 0.324 18%
resnet-18 ppm [3] 0.380 18%
resnet-50 ppm [3] 0.408 20%
resnet-101 upernet [2] 0.420 22%

* resnet-50 upernet [2] 0.377 22%
* resnet-50 + DA upernet [2] 0.385 14%

Table 3: Context sensitivity of different networks on
ADE20k. Models marked with * are also reported in the
main paper and are trained by us with batch size of 6, due
to limited GPU memory. All the other models are trained
by [2] with batch size of 16

Model Removed ADE20k

Pixels mIoU Acc

Upernet[2] - 0.377 78.31

No removal (sizebased) Ignore 0.354 77.45
No inpainter (sizebased) Ignore 0.375 78.25
DA (sizebased) Ignore 0.379 78.31

Table 4: Data augmentation results on ADE20k dataset

using different encoders and decoders and having very dif-
ferent mIoU, all the four models exhibit similar sensitivity
of sidewalk class to removal of car (18-22%) as reported for
our original baseline model (*resnet-50). The overall sen-
sitivity matrix AR(ci, cj) looks similar to the one shown
in Figure 4. We also see from Table 3 that data augmented
model still achieves the lowest sensitivity (14%). The above
experiment confirm that context sensitivity is not specific to
a network architecture, but is seen across different models.
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original (I) Upernet Ours original (I) Upernet Ours

I − car Upernet Ours I − car Upernet Ours

original (I) Upernet Ours original (I) Upernet Ours

I − column Upernet Ours I − boat Upernet Ours

Figure 6: Examples of segmentation failures due to removal of a single context object. We see the segmentation of road,
bench and house affected significantly when context objects like car, columns and boat is removed (comparing odd and even
rows). Model trained with proposed data-augmentation is more robust to these changes.

original (I) Upernet Ours original (I) Upernet Ours

I − car Upernet Ours I − sign Upernet Ours

I − car (flipped mask) Upernet Ours I − sign (flipped mask) Upernet Ours

Figure 7: Experiment to verify that the volatility of the segmentation output is due to object removal and not due to editing
artifacts. First row shows original images and the segmentation produced for them. Second row shows the edited images with
an object removed and the segmentation output for them. Here we can see the segmentation output of Upernet significantly
affected by the removal of car and sign. Final, row shows the original image edited with the same object mask as the second
row, but horizontally flipped. Thus the object is not removed, but a different part of the image is edited with the same mask.
We can see here that the segmentation is not affected at all by this edit and is very similar to the segmentation produced by
the original image.


