
Appendix

A. Implementation Details
In both of the GT and Det experiments on the CLEVR

dataset, we set the dimension of the label embedding (i.e.,
d) and the dimension of h in all output modules to 128.
The classifier consists of a simple multi-layer perceptron
that maps the 128-dimentional features to the number of
possible answers (i.e., 28), and a softmax layer. We used
Adam [1] optimizer with an initial learning rate 0.001 to
train our module parameters. We trained for 5 epochs for
the GT setting and 10 epochs for the Det setting, and we re-
duced the learning rate to 0.0001 after the first epoch. Each
epoch takes about one hour with an Nvidia 1080Ti graphic
card.

The mapping matrices of the Describemodule are im-
plemented differently between the GT and Det setting. In
the GT setting, as each object has four attribute values cor-
responding to four attribute categories (i.e., color, shape,
size, material), and our node embedding is the concatena-
tion of attribute label embeddings, the dimension of node
embeddings is 4d, where d is the dimension of label embed-
dings. We fix the order of label embedding concatenation
as [color, shape, size, material], so we can extract node i’s
color feature by [Id;0d;0d;0d] · vi, where Id,0d are d× d
identity matrix and zero matrix respectively. So in the GT
setting, our four mapping matrixes are defines as:

M1 = [Id;0d;0d;0d],

M2 = [0d; Id;0d;0d],

M3 = [0d;0d; Id;0d],

M4 = [0d;0d;0d; Id].

(1)

In the Det setting, we regard Mk ∈ Rd×d as parameters and
learn them automatically, which leads to an increase of the
number of parameters (Det has 0.55M parameters while Gt
only has 0.22M).

As for the attention functions in the CLEVR GT experi-
ments, besides the label-space softmax which is mentioned
in the main body, we have also tried the sigmoid activa-
tion. Specifically, we fused multiple label vectors into one
vector via a fully connected layer, and then applied the sig-
moid function to separately compute attention weights of
each node and edge. Using this attention strategy, we can
still obtain 100% accuracy in the GT setting, demonstrating
that our model is robust and flexible.

In the VQAv2.0 dataset, we selected the most frequent
3000 answers from the training set, and predicted the tar-
get answer from these candidates. We used an LSTM as
the question encoder and fused the 1024-dimensional ques-
tion embedding with the output feature from our module
network for the answer classification. For the training, we
used Adam optimizer with an initial learning rate 0.0008

and we set batch size as 256. The learning rate was decayed
by half every 50000 training steps and the training lasted for
100 epochs.

B. Failure Cases of the CLEVR Det Setting
We classify the failure cases in the CLEVR Det setting

into three categories:

1. The coordinate detection is inaccurate (Figure 1).

2. Some objects are occluded (Figure 2).

3. The mask-based object division is inaccurate (Fig-
ure 3). Specifically, when we propose objects based
on the generated mask from the “Attend” modules of
[2], we may wrongly propose more or less objects due
to the blurring boundaries.

In all of Figure 1, 2, and 3, we mark the reasoning steps
that cause mistakes in red box. We can see that using
our X reasoning over scene graphs, we can easily track the
reasoning process and diagnose where and why the model
makes a mistake, which is an inspiring step towards the ex-
plainable AI.

C. Case Study on the VQAv2.0
In the VQAv2.0 experiments, we predict a probability

distribution over our modules at each step, and then feed the
soft fusion of their outputs into next step. We set the reason-
ing length to 3 and force the last module to be Describe.
We show a typical sample of the VQAv2.0 dataset in Fig-
ure 4. The top row is the modules with the most probabil-
ity at each step, while the bottom row shows the results of
Relate at Step 2. We can see that even though the ques-
tion “what is the man wearing on his head” explicitly re-
quires the relationship reasoning (i.e., find the “man” first,
and then move the focus to his head), our model scarcely
relies on the results of the Relate module. Instead, it can
directly focus on the “head” and give the correct prediction.
We think this is due to the simplicity of questions, which is
a shortcoming of the VQAv2.0 dataset.
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how many big red metal things are behind it ?
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Question: What number of objects are tiny spheres or brown blocks behind the gray matte object ?

Figure 1: Failure cases caused by the inaccurate coordinate detection. Top case: the large brown cube is not behind the gray
rubber object. Bottom case: a large red cube is wrongly recognized to be behind the tiny cylinder.
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Question: Is there a blue metal object that has the same size as the gray metal object ?
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Figure 2: Failure cases caused by occluded objects. We show the high-resolution images here, and we can see that 1) in the
left image, there is a small blue cube behind the large blue cube occluded; 2) in the right image, there is a red cylinder behind
the large brown cylinder occluded. These occluded objects do not have corresponding dots in the reasoning results, leading
to a wrong prediction “No” while the actual answer is “Yes”.
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Question: There is a object that is both behind the cyan object and in front of the small metal cylinder ; 
what size is it ?
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Figure 3: Failure cases caused by the inaccurate object division. Top case: two dots are assigned to the same object. Bottom
case: two adjacent objects with the same attribute values (i.e., large, brown, sphere, metal) are recognized as one object,
which makes the predicted number less than the ground truth answer.
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Figure 4: A typical case of the VQAv2.0 dataset. The top row lists the modules with the maximum probability at each step.
We can see that even the question “what is the man wearing on his head” explicitly requires the relationship understanding,
the module Relate is still not necessary as the target region can be directly found. We argue the simplicity of question
annotations is a major shortcoming of the VQAv2.0 dataset.
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