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In this supplemental material, we provide more details

on the network architecture (Section 1), present additional

results of our method on 3D point cloud instance segmen-

tation (Section 2), additional qualitative comparisons of our

results against baselines (Section 3), a visualization of the

learned 3D scene layout embedding (Section 4), and we dis-

cuss the convergence of iterative application of the VDRAE

for 3D scene layout refinement (Section 5).

1. Network Architecture Details

Figure 1 and Figure 2 show the architecture of our en-

coder and decoder networks in more detail. The encoder

network takes the initial segment hierarchy and aggregates

features in its nodes to capture the hierarchical context. The

decoder network then takes the encoded features and pre-

dicts for each node whether the node is a leaf 3D object

node, the semantic category of the object, and refined pa-

rameters of its bounding box. Note that the two networks

are connected through jump (i.e. skip) connections between

the node features. See the main paper architecture figure for

a more compact visualization of the entire architecture.

2. 3D Instance Segmentation Evaluation

In Table 1 and Table 2, we report results on the 3D in-

stance segementation task. Though the goal of our method

was not to explicitly produce 3D instance segmentation,

such segmentations are produced implicitly when segments

from the point cloud are assigned to detected 3D object

nodes in our layout hierarchy, each with a specific category

label. We see that our approach outperforms the baseline

from an existing 3D instance semantic segmentation ap-

proach [2].
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Figure 1: Our encoder architecture takes a point cloud seg-

ment as input for each node and then combines PointCNN

features, oriented bounding box (OBB) parameters for the

node, and a feature encoding that from node’s child nodes.

These features are passed through FC layers to produce the

encoding xenc
i of the specific node, and then individual node

encoding pairs are combined through fenc to produce the

encoding feature xenc
p for their parent node.

3. More Qualitative Results

Figure 3 shows additional qualitative comparisons of our

VDRAE 3D layout prediction to ground truth and results

using SGPN [2] on Matterport3D test scenes. In general,

we see that our VDRAE approach matches the ground truth

layouts more closely than the baseline approach. These re-

sults demonstrate that our hierarchical encoding of the 3D

layout and iterative refinement through the trained VDRAE

can lead to improvements in 3D object detection.

Figure 4 shows qualitative results of our VDRAE 3D lay-

out prediction on S3DIS scenes.
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Column Chair Table Bookcase Sofa Board mAP

SGPN [2] 0.607 0.408 0.469 0.476 0.064 0.111 0.356

Ours 0.623 0.462 0.537 0.449 0.451 0.415 0.445

Table 1: Comparison of our approach against prior work on instance segmentation on the S3DIS dataset. Values report

average precision with IoU threshold 0.5.

Chair Table Cabinet Cushion Sofa Bed Sink Toilet TV Bathtub Lighting mAP

SGPN [2] 0.241 0.176 0.036 0.159 0.267 0.304 0.110 0.149 0.042 0.063 0.057 0.146

Ours 0.305 0.210 0.062 0.217 0.248 0.350 0.136 0.329 0.057 0.121 0.106 0.195

Table 2: Comparison of our approach against prior work on instance segmentation on the Matterport3D dataset. Values report

average precision with IoU threshold 0.5.
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Figure 2: Our decoder architecture takes an aggregated fea-

ture and decodes it to pairs of node features (here shown as

xdec
l and xdec

r . From these features, we predict several tar-

gets: whether the node corresponds to a 3D object detection

or not (on), the category of the object detection (cn) and the

parameters of the bounding box for the detection (tn).

4. 3D Scene Layout Embedding Manifold Vi-
sualization

To investigate the degree to which our method learns a

meaningful embedding of 3D scene layouts, we visualize

the the root node features of encoded scenes from the Mat-

terport3D dataset. The root node feature encodes the entire

observed 3D scene layout and the hierarchical structure of

contained nodes. The visualization in Figure 5 shows that

the embedding space of this feature does indeed capture the

layout of different types of rooms, leading to clustering of

semantically similar rooms.

5. Discussion of Convergence of 3D Scene Lay-
out Refinement

Algorithm 1 of the main paper (reproduced here for con-

venience), presents an approach for iteratively applying our

VDRAE to improve 3D scene layout prediction. Here we

discuss the converge properties of our algorithm.

The algorithm iterates until the structure of the hierarchy

Algorithm 1: VDRAE 3D Scene Layout Prediction.

Input : Point cloud of indoor scene: P ; Trained VDRAE.

Output: 3D object layout {B, h}.

1 S ← Over-segmentation(P);

2 h ← HierarchyConstruction(S, P);

3 repeat
4 B ← VDRAE(S, h, P);

5 h ← HierarchyConstruction(B, S, P);

6 until Termination condition met;
7 return {B, h};

between iterations remains unchanged. During each iter-

ation, the resulting hierarchy is determined by the scaled

affinity E(u, v) = ecea where

ec(u, v) =

{ −log(1− cs), u and v in same leaf node s
0.1, otherwise

and cs is the classification confidence of node s to be labeled

as ‘object’. Note that this changes only when cs changes.

For more confident groupings of u and v, cs approaches 1,

so ec approaches +∞, making it more expensive to separate

u, v. In contrast, for less confident groupings, both cs and

ec is close to zero, resulting in a weaker bond between the

two nodes.

When we iterate, we will naturally keep the grouping of

subtrees u, v whose parent node s has a high classification

confidence cs, and adjust the grouping of the nodes that has

a less confident cs. Thus, at each iteration, we only need to

consider what happens to nodes with low cs (we can con-

sider nodes with high cs to be fixed).

After each iteration, we will have alternate groupings

that result in either 1) more nodes with a higher cs or 2)

no more nodes with high cs. In case 2), because the nodes

have low cs, they are not object nodes and so do not af-

fect the overall object detection result. Thus the structure

of the hierarchy does not change between iterations and the
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Figure 3: We visualize 3D scene layout results using SGPN [2] (left two columns), our VDRAE approach (middle two

columns), and ground truth (right two columns). The pairs of columns show a 3D view of the detected object bounding

boxes, and a top-down view of the same detections. We see that our approach matches the ground truth object bounding

boxes and categories better than the baseline. In particular, our approach is significantly better at predicting smaller objects

such as pillows on sofas and beds, indicating that an encoding of the surrounding hierarchical context is valuable.
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Figure 4: We visualize 3D scene layout results using our VDRAE approach on S3DIS scenes. The first column shows the

input point cloud. The second column is the over-segmentation from which we construct an initial segment hierarchy. The

third column shows the 3D object detections with colors by category. The final two columns show bounding boxes for the

detections.
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Figure 5: Visualization of the learned embedding for 3D

scene layouts through our VDRAE approach. We extract

the aggregated feature at the root node of each 3D scene and

visualize the embedding using t-sne [1]. The visualization

shows that different room categories are separated by the

embedding, and that 3D scene layouts that are similar in

nature (e.g. the two living rooms with TVs on the left and

the two bedrooms on the right) are clustered together in the

embedding.
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Figure 6: Average number of 3D object nodes in the pre-

dicted hierarchy plotted against iteration count during re-

finement of the 3D scene layout in Matterport3D test set

scenes. We see that the total number of nodes converges,

confirming our empirical observation that our hierarchy re-

finement algorithm converges within about 5 iterations for

the datasets we tested.

algorithm is converged in this scenario. In case 1), there

are increasing number of nodes with high cs values corre-

sponding to more object nodes and we will continue to it-



erate. However, every time, since we have a finite number

of nodes, the number of nodes going from low cs to high

cs will decrease until there are no low cs nodes left. In this

case, all nodes will belong to some single object node, and

the hierarchy structure will have converged as well.

This is a high-level discussion of the convergence be-

havior of our layout refinement approach. In practice, we

observe that 3D scene layouts converge to non-changing hi-

erarchy structure within 5 iterations. This is confirmed also

by the plot in Figure 6 which shows the average number

of detected hierarchy object nodes against iteration count

across test scenes from the Matterport3D test set. We leave

a more thorough and formal discussion of the convergence

properties of VDRAE-based 3D scene layout refinement to

future work.
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