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1. The learning rate scheduler and the data
preprocessing methods.

The original performance of ST-GCN on the NTU-
RGBD dataset is 88.3, in which the learning rate is mul-
tiplied by 0.1 at the 10th and 50th epochs. The training
process is ended in 80th epoch. We rearrange the learning
rate scheduler from [10, 50, 80] to [30, 40, 50] and obtain
the better performance (marked as “before preprocessing”
in Tab. 1).
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Figure 1. The left sketch shows the joint label of the Kinetics-
Skeleton dataset and the right sketch shows the joint label of the
NTU-RGBD dataset.

Moreover, we use some preprocessing strategies on the
NTU-RGBD dataset. The body tracker of Kinect is prone to
detecting more than 2 bodies, some of which are objects. To
filter the incorrect bodies, we first select two bodies in each
sample according to the energy of each body, which is de-
fined as the summation of the skeleton’s standard deviation
across each channel.

Subsequently, each sample is normalized to make the
distribution of the data for each channel unified. In detail,
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the coordinates of each joint are subtracted from the coor-
dinates of the “spine joint” (the 2nd joint in the left sketch
in Fig. 1).

Finally, as different samples may be captured in differ-
ent viewpoints, similar to [1], we translate the original 3D
location of the body joints from the camera coordinate sys-
tem to body coordinates. For each sample, we perform a
3D rotation to fix the X axis parallel to the 3D vector from
the “right shoulder” (5th joint) to the “left shoulder” (9th
joint), and the Y axis toward the 3D vector from the “spine
base (21st joint) to the spine (2nd joint). Fig. 2 shows an
example of the preprocessing.

Figure 2. Example of the data preprocessing on the NTU-RGBD
dataset. The left is the original skeleton, and the right is the pre-
processed skeleton.

Tab. 1 compares the performances that before and after
the preprocessing. It shows that the preprocessing consid-
erably helps the recognition, which may because that the
original data are noisy.
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Methods Accuracy (%)
original performance in [2] 88.3
before preprocessing 90.1
after preprocessing 92.7

Table 1. Comparisons of the validation accuracy using rearranged
learning-rate scheduler and data preprocessing.
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