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In this supplementary material, we provide implementa-
tion details (Sec. A), introduce a new dataset (Sec. B) and
report additional experimental results (Sec. C). Additionally
we provide a video file with further qualitative examples.

A. Implementation details

As described in Sec. 3, each module employs a U-Net
architecture. We use the exact same architecture for all the
networks. More specifically each block of each of the en-
coder consists of a 3 × 3 convolution, batch normalization
[4], ReLU and average pooling. The first convolution lay-
ers have 32 filters and each subsequent convolution doubles
the number of filters. Each encoder is composed of a to-
tal of 5 blocks. The decoder blocks have similar structure:
3× 3 convolution, batch normalization and ReLU followed
by nearest neighbour up-sampling. The first block of the
decoder has 512 filters. Each consequent block has the re-
duced number of filters by a factor of 2.

As described in Sec. 3.2, the keypoint detector ∆ pro-
duces K heatmaps followed by softmax. In particular, we
employ softmax activations with 0.1 temperature. Indeed,
thanks to the use of a low temperature for softmax, we
obtain sharper heatmaps and avoid uniform heatmaps that
would lead to keypoints constantly located in the image cen-
ter.

For G, we employ 4 additional Residual Blocks [3] in
order to remove possible warping artifacts produces by M .
The output of G is a 3 channel feature map followed by the
sigmoid. We use the discriminator architecture described in
[7].

The framework is trained for T epochs where T equals
250, 500 and 10 for Tai-Chi, Nemo and Bair respectively.
Epoch involves training the network on 2 randomly sam-
pled frames from each training video. We use the Adam
optimizer [5] with learning rate 2e-4 and then with learning
rate 2e-5 for another T

2 epochs.

As explained in Sec. 4.2, for Image-to-Video translation,
we employ a single-layer GRU network in order to predict
the keypoint sequence used to generate the video. This re-
current network [2] has 1024 hidden units and is trained via
L1 minimization.

B. MGif dataset

We collected an additional dataset of videos containing
movements of different cartoon animals. Each video is a
moving gif file. Therefore, we called this new dataset MGif.
The dataset consists of 1000 videos, we used 900 videos
for training and 100 for evaluation. Each video has size
128 × 128 and contains from 5 to 100 frames. The dataset
is particularly challenging because of the high appearance
variation and motion diversity. Note that in the experiments
on this dataset, we use absolute keypoint locations from the
driving video instead of the relative keypoint motion de-
tailed in Sec. 3.6.

C. Additional experimental results

In this section, we report additional results. In Sec. C.1
we visually motivate our alignment assumption, in Sec. C.2
we complete the ablation study and, in Secs. C.3 and C.4,
we report qualitative results for both the image-to-video and
image animation problems. Finally, in Sec. C.5, we visual-
ize the keypoint predicted by our self-supervised approach.

C.1. Explanation of alignment assumption

Our approach assumes that the object in the first frame of
the driving video and the object in the source image should
be in similar poses. This assumption was made to avoid sit-
uations of meaningless motion transfer as shown in Fig. 7.
In the first row, the driving video shows the action of clos-
ing the mouth. Since the mouth of the subject in the source
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image is already closed, mouth disappears in the gener-
ated video. Similarly, in the second row, the motion in the
driving video shows a mouth opening sequence. Since the
mouth is already open in the source image, motion transfer
leads to unnaturally large teeth. In the third row the man is
asked to raise a hand, while it has already been raised.
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Figure 7: Illustration of the pose misalignment issue on the
Nemo and Tai-Chi datasets.

C.2. Additional ablation study
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Figure 8: Reconstruction Errors as functions of the number
of keypoints. Results obtained on Tai-Chi.

We perform experiments to measure the impact of the
number of keypoints on video reconstruction quality. We
report results on Tai-Chi dataset in Fig. 8. We computed L1

and AKD metrics as described in the paper. As expected,
increasing the number of keypoints leads to a lower recon-
struction error, but additional keypoints introduce memory

and computational overhead. We use 10 keypoints in all our
experiments, since we consider this to be a good trade-off.

C.3. Image-to-Video translation

As explained in Sec. 4.2 of the main paper, we com-
pare with the three state of the art methods for Image-
to-Video translation: MoCoGAN [6] and SV2P [1], and
CMM-Net [8]. CMM-Net is evaluated only on Nemo and
SV2P only on the Bair dataset. We report a user study and
qualitative results.

User Study. We perform a user study for the image-to-
video translation problem. As explained in Sec. 4.3, we
perform pairwise comparisons between our method and the
competing methods. We employ the following protocol: we
randomly select 50 videos and use the first frame of each of
video as the reference frames to generate new videos. For
each of the 50 videos the initial frame, and two videos gen-
erated by our and one of the competing methods are shown
to the user. We provide the following instructions: ”Se-
lect a more realistic animation of the reference image”. As
in Sec. 4.2 of the main paper, our method is compared with
MoCoGAN [6], Sv2p [1], and CMM-Net [8]. The results of
the user study are presented in Table 5. On average, users
preferred the videos generated by our approach over those
generated by other methods. The preference gap is espe-
cially evident for the Tai-Chi and Bair datasets that contain
a higher amount of large motion. This supports the ability
of our approach to handle driving videos with large motion.

Tai-Chi Nemo Bair

MoCoGAN [6] 88.2% 68.2% 90.6%
CMM-Net [8] - 63.6% -

SV2P [1] - - 98.8%

Table 5: User study results on image-to-video translation.
Proportion of times our approach is preferred over the com-
petitors methods

Qualitative results. We report additional qualitative results
in Figs. 9, 10 and 11. These qualitative results further sup-
port the ability of our method to generate realistic videos
from source images and driving sequences.

In particular, for the Nemo dataset (Fig. 9), MoCoGAN
and CMM-Net suffer from more artifacts. In addition, the
videos generated by MoCoGAN do not preserve the identity
of the person. This issue is particularly visible when com-
paring the first and the last frames of the generated video.
CMM-Net preserves better the identity but fails in gener-
ating realistic eyes and teeth. In contrast to these works,
our method generates realistic smiles while preserving the
person identity.
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For Tai-Chi (Fig. 11), MoCoGAN [6] produces videos
where some parts of the human body are not clearly visible
(see rows 3,4 and 6). This is again due to the fact that vi-
sual information is embedded in a vector. Conversely, our
method generates realistic human body with richer details.

For Bair (Fig. 10), [1] completely fails to produce
videos where the robotic is sharp. The generated videos are
blurred. MoCoGAN [6] generates videos with more details
but containing many artifacts. In addition, the backgrounds
generated by MoCoGAN are not temporally coherent. Our
method generates realistic robotic arm moving in front of
detailed and temporally coherent backgrounds.

C.4. Image animation

As explained in the main paper, we compare our method
with X2Face [9]. Results are reported in Figs. 13, 14 and
15 on the Nemo, Tai-Chi and Bair datasets respectively.

When tested using the Nemo dataset (Fig. 13), our
method generates more realistic smiles on most of the ran-
domly selected samples despite the fact that the XFace
model is specifically designed for faces. Similarly to the
main paper, the benefit of transferring the relative motion
over absolute locations can be clearly observed in the bot-
tom right example where the video generated by X2face in-
herits the large cheeks of the young boy in the driving video.

For Tai-Chi (Fig. 14), X2face is not able to handle the
motion of the driving video and simply warps the human
body in the source image as a single blob.

For Bair (Fig. 15), we observe a similar behavior.
X2face generates unrealistic videos where the robotic arm
is generally not distinguishable. On the contrary, our model
is able to generate a realistic robotic arm moving according
to the driving video motion.

Finally in Fig 12, we report results on the MGif dataset.
First, these examples illustrate high diversity of MGif
dataset. Second, we observe that our model is able to trans-
fer the motion of the driving video even if the appearance
of the source frame is very different from the driving video.
In particular, in all the generated sequences, we observe that
the legs are correctly generated and follow the motion of the
driving video. The model preserves the rigid parts of the an-
imals as, for instance, the abdomen. In the last row, we see
that the model is also able to animate the fox tail according
to the motion of the cheetah tail.

C.5. Keypoint visualization

Finally, we report visual examples of keypoints learned
by our model in Figs. 16, 17, 18 and 19. On the Nemo

dataset, we observe that the obtained keypoints are seman-
tically consistent. For instance, the cyan and light green
keypoints constantly correspond to the nose and the chin
respectively. For Tai-Chi, the keypoints are also semanti-
cally consistent: light green for the chin and yellow for the
left-side arm (right arm in frontal views and left arm in back
views), for instance. For the Bair dataset, we observe that
two keypoints (light green and dark blue) correspond to the
robotic arm. The other keypoints are static and can cor-
respond to the background. Finally, concerning the MGif
dataset, we observe that each keypoint corresponds to two
different animal parts depending if the animal is going to-
wards left or right. In the case of animals going right (last
three rows), the keypoints are semantically consistent (red
for the tail, dark blue for the head etc.). Similarly, the key-
points are semantically consistent among images of animal
going left (red for the head, dark blue for the tail etc.). Im-
portantly, we observe that a keypoint is associated to each
highly moving part, as legs and tails.
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Figure 9: Qualitative results for Image-to-video translation on the Nemo dataset.
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Figure 10: Qualitative results for Image-to-video translation on the Bair dataset.
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Figure 11: Qualitative results for Image-to-video translation
on the Tai-Chi dataset.
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Figure 12: Qualitative results for image animation on the
MGif.
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Figure 13: Additional qualitative results for image animation on the Nemo dataset: X2face (first) against our method (second).
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Figure 14: Additional qualitative results for image animation on the Tai-Chi dataset: X2face (first) against our method
(second).
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Figure 15: Additional qualitative results for image animation on the Bair dataset: X2face (first) against our method (second).
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Figure 16: Keypoints predicted on the Nemo dataset. Figure 17: Keypoints predicted on the MGif dataset.
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Figure 18: Keypoints predicted on the Tai-Chi dataset. Figure 19: Keypoints predicted on the Bair dataset.
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