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A. Additional Details on Data Generation

Lighting: Light sources available in CRIB are three rod
shaped light sources and four point light sources. These
are implemented using Blender’s built in Lamp object, us-
ing type Point for point sources and Area for rod sources.
After the choice of rod or point is made, the specified loca-
tion and rotation (if rod light source) are applied. The color
temperature of the light is implemented by using Blender’s
Blackbody shader and is applied.

Object motion: The user specifies the total number of
frames, n (length of the sequence) and number of points on
the viewing sphere p. A set of p key frames of specified or
random (azimuth, elevation, tilt, scale) are inserted at ran-
dom points between 0 and n. Note that scale here is changed
from the object’s initial scale. Once these keyframes are
specified, linear interpolation is done using Blender’s ani-
mation tools to generate the object motion, rotating around
its estimated center of mass.

Preprocessing: For the collected Toys-200 automati-
cally preprocessing the geometry is straightforward since
their geometry was manually cleaned up and joined when
they were collected. Manual processing of a model down-
loaded from Blendswap often involves removing irrelevant
geometry from the Blender scene (anchor points, other ob-
jects) and joining all the separate geometry forming an
object into a single Blender object using tools built into
Blender. Importing ShapeNet objects in Blender objects re-
sults in importing all the edges and faces as individual ob-
jects. We implement code that can appropriately join this
geometry into a single object for ShapeNet automatically.
For all objects the center of mass is estimated using built in
tools based on the shape of the object. Since the object is
rotating and changing in scale, we need to make sure that
during the motion it will not leave the camera field of view.

∗Equal contribution.

This is done by calculating the initial scale of the object so
that the 3D bounding box during the interpolated change in
rotation and scale will not be greater than the maximum 3D
bounding box that fits in the camera field of view.

Annotations: Instance segmentations are generated by
rendering an alpha mask of the object. This results in an
image with pixel value 255 where the object is present and
0 where the object is absent. The segmentation is used to
calculate an bounding box region for the object.

Backgrounds: Backgrounds and foregrounds (objects)
are rendered separately. When compositing an object se-
quence with a background we make sure that the object is
not included in the background set of objects. For Toys-200
there are 8 background scenes consisting of groups of 25
objects rendered laid out on a floor in a cluttered manner.
For ShapeNet, there are 4 background scenes each consist-
ing of 20 objects coming from 5 categories. We ensure that
the objects in the background are distinct by choosing back-
grounds from scenes where the object is absent. Composit-
ing is done using a standard alpha overlay.

B. Description of Algorithms

Our task is different from [1, 10, 6] in that at most one
new concept is present in each learning exposure. Due to
this, we re-implement the algorithms in PyTorch [9] with
modifications as described in the following sections. Re-
fer to Sec. D.1 for details of additional data augmentation
performed on each dataset. In all of the algorithms, the im-
ages are input to the network after the following normal-
ization: image = image−mean image

255 , where the operations are
pixel-wise subtraction and division, and mean image is the
pixel-wise mean over all images in the training data seen by
the algorithm.
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Images Videos 3D Objects

COIL [8] NORB [5] CORe50 [7] Toybox [11] ShapeNet [2] Sculptures [12] CRIB-Toys-200

Category/Instance I C C C C I I
Synthetic 7 7 7 7 3 3 3
Pose Labelling 3 3 7 3 3 7 3

Unlimited Views 7 7 7 7 7 7 3
Data Generation API 7 7 7 7 7 7 3
Temporally Continuous 7 7 3 3 7 7 3
Bounding box annotation 7 7 7 7 7 7 3

Table 1: Characteristics of different datasets of objects that may be used for incremental learning compared to CRIB with
Toys-200. Below the horizontal line are characteristics especially relevant to developmentally plausible incremental learning.

B.1. LwF and iCaRL

For each learning exposure, training data for the object
instance includes positive bounding box patches from each
frame in a learning exposure and as many random patches
(one per learning exposure frame) outside of the positive
patch as negative samples to allow for discriminative learn-
ing. In addition to samples from the new concept, iCaRL
also includes images for the learned concepts from the ex-
emplar sets.

For iCaRL, after the model finishes updating the feature
representations for the new concept, exemplar set for that
concept is constructed, consisting of the positive patches of
the most representative images of that concept.

The algorithm performance is tested after each learning
exposure on positive patches of the testing images as de-
scribed in the main document.

B.2. E2EIL

As described in [1], E2EIL has an initial training phase
followed by a balanced finetuning phase at each time step.
In the initial training phase, training data comes from posi-
tive patches of the new learning exposure and the exemplar
sets for the previously learned concepts. Note that negative
samples as described in Sec. B.1, are only used in the very
first learning exposure. An initial exemplar set is then con-
structed as described in [1], after which, balanced finetun-
ing is done followed by updating the exemplar set with the
final most representative images. Testing is performed as
described in Sec. B.1. Our implementation is also different
from [1] in that we do not use gradient noise.

C. Hyperparameter Settings

C.1. CRIB-Toys

The hyperparameters presented in Tables 2 and 3 are
used for training the deep network associated with a learn-
ing algorithm for each new learning exposure. We arrived

at these hyperparameters via grid search over initial learn-
ing rate, learning rate decay and total number of epochs.
The training procedure uses a Stochastic Gradient Descent
Optimizer with momentum of 0.9 and a weight decay (coef-
ficient of L2 penalty term over parameters) of 10−5 for LwF
and iCaRL and 10−4 for E2EIL. For LwF and iCaRL, each
of these training sessions starts off with an initial learning
rate (Init LR train) and follows a decay schedule of being re-
duced by a factor of Learning Rate Decay (LRD) at 0.7 and
0.9 mark of the total number of epochs (Num. epochs train).
For E2EIL, the learning rate (for both the initial training–
LR train and balanced finetuning–LR finetune) is decayed
every 10 epochs.

C.2. CRIB-ShapeNet

The hyper-parameters and the training procedure used
for iCaRL-PT-ND on CRIB-ShapeNet are the same as those
used for it in the experiment on CRIB-Toys (found in Table
2.

C.3. CIFAR-100 Single Exposure

On CIFAR,-100 we use an initial learning rate of 0.05
for iCaRL-PT-ND and 0.2 for iCaRL-S-ND. The model
is trained for 70 epochs. The training procedure uses a
Stochastic Gradient Descent Optimizer with momentum of
0.9 and a weight decay of 10−5. Learning rate is reduced
by a factor of 5 at 0.7 and 0.9 mark of the total number of
epochs.

C.4. CIFAR-20 Repeated Exposure

On CIFAR-20 (20 category subset of CIFAR-100) we
use an initial learning rate of 0.002 for iCaRL-PT-ND. The
model is trained for 5 epochs. The training procedure uses a
Stochastic Gradient Descent Optimizer with momentum of
0.9 and a weight decay of 10−5. Learning rate is reduced
by a factor of 5 at 0.7 and 0.9 mark of the total number of
epochs.



Hyperparameters LwF-
(S/PT)

iCaRL-S-
(D/ND)

iCaRL-
PT-ND

E2EIL-S-
(D/ND)

E2EIL-
PT-
(D/ND)

Single Exposure
CRIB-Toys-200

& Repeated
Exposure CRIB-

Toys-(50/200)

Init LR train 0.01 0.01 0.01 0.01 0.01
Init LR finetune - - - 0.001 0.001

LRD 5 5 5 10 10
Num. epochs train 20 10 20 15 20

Num. epochs finetune - - - 10 14
Minibatch size 100 100 100 200 200

Table 2: Hyperparameter Settings for Fully Supervised Experiments on CRIB-Toys

Hyperparameters iCaRL-PT-ND
Repeated Exposure

CRIB-Toys-
(50/100/150/200)

Init LR train 0.01
LRD 5

Num. epochs train 10

Table 3: Hyperparameter Settings for Unsupervised Repeated Exposure Experiments on CRIB-Toys

D. Data Augmentation

D.1. Data augmentation for CRIB-Toys

D.1.1 LwF and iCaRL

We use random crops by zero-padding on all sides and crop-
ping out a random section of the same size as the original
image from this padded image. Random flip augmentations
are also used where flipping is done across the vertical axis
(i.e. the image is flipped horizontally). In addition, we use
color augmentation by jittering the hue, saturation and value
of each image by random values in the range [−0.02, 0.02],
[−0.05, 0.05] and [−0.1, 0.1] respectively.

D.1.2 E2EIL

We choose randomly with equal probability, one of the fol-
lowing three operations to perform on top of the raw image:

1. Brightness augmentation: Intensity is altered by
adding a random integer value in the range [−63, 63]

2. Multiplicative jittering: Each pixel in the normalized
image is multiplied by a random value in the range
[0.2, 1.8].

3. Keeping the original image unaltered

Then we randomly (with probability 1/2) decide whether
to crop the image. Random cropping is performed as de-
scribed in §D.1.1. Finally, we randomly (with probability
1/2) decide whether to horizontally mirror the image.

D.2. Data augmentation for experiments on CRIB-
ShapeNet

The data augmentations used for iCaRL-PT-ND on
CRIB-ShapeNet are the ones as described in Sec. D.1.1.

D.3. For experiments on CIFAR

For the single exposure experiment, we perform random
crops and random flip augmentations as described in Sec.
D.1.1. For the repeated exposure experiment, color aug-
mentation as described in Sec. D.1.1 is also applied in ad-
dition to the operations performed in single exposure.

E. Modifications to Loss Function
E.1. LwF

We modify the loss to accommodate for our setting of
learning at most one new concept in each learning expo-
sure. We use binary cross-entropy loss instead of multi-
class cross-entropy loss for classification and distillation.
Hence we try to minimize the following:

L(w) = LD(w) + LC(w)

where LD(w) is defined as

LD(w) =
−1
N

N∑
i=1

C−1∑
j=1

[ pdistij log qij

+ (1− pdistij)log (1− qij) ]

and LC(w) is defined as

LC(w) =
−1
N

N∑
i=1

(piC log qiC + (1− piC)log (1− qiC))



where pi is the ground truth label for sample i and qi is the
score obtained by applying a sigmoid function on the logits
from the network, with parameters w. pdisti is the output
of the previous network (before any updates are made to
w in the current time step) for sample i. N is the number
of samples in a minibatch and C is the number of unique
concepts seen by (hence, also the number of output units
in) the learning algorithm.

E.2. E2EIL

The loss is composed of classification loss and distilla-
tion loss. Classification loss is a multi-class cross entropy
loss, using the ground truth as the target label for all images
and is computed across all learned concepts. Distillation
loss is computed in a similar manner to the distillation loss
in [6] with a temperature of 2. We use an additional coef-
ficient for the distillation loss as suggested in [4], in which
distillation loss has a weight of T 2. We minimize the fol-
lowing loss function:

L(w) = LD(w) · T 2 + LC(w)

The classification loss LC(w) is defined as:

LC(w) =
−1
N

N∑
i=1

C∑
j=1

pij log qij

where pi is the ground truth label for sample i and qi is the
score obtained by applying a softmax function on the logits
from the network.
The distillation loss LD(w) is defined as:

LD(w) =
−1
N

N∑
i=1

C∑
j=1

pdistij log qdistij

where pdisti and qdisti are modified versions of pi and qi
respectively, as described in §3.2 of [1].

F. Modifications in iCaRL and E2EIL for re-
peated exposures

Modifications are required in order to allow our adapta-
tion of iCaRL [10] and E2EIL [1] to work with repeated
exposure to concepts seen in previous learning exposures.
The original algorithms operate under the assumption that
every new learning exposure contains a new concept, and
make architectural changes (adding a new output node) and
construct the exemplar set. We encourage the reader to re-
fer to Algorithm 4 in [10] for specific details of the standard
iCaRL exemplar set construction method.

Our modifications are so that when iCaRL (or E2EIL)
receives training examples for a concept seen before, exem-
plars previously stored for that concept are combined with

the new training images. Assume that iCaRL (or E2EIL) is
undergoing a repeated exposure for concept k. It might be
the case that the existing exemplar set Ek for concept k is so
that |Ek| < |Dk| where Dk is the set of current training im-
ages for k. In order to avoid over-representation of Dk over
Ek when constructing the exemplar set, we use a weighted
mean where the weights for Ek images are proportional to
|Dk| and vice versa.

G. Inference Procedure for Unsupervised Re-
peated Exposure

In this section, we define the inference procedure (and
accuracy computation) for a learning algorithm in the unsu-
pervised repeated exposure learning task.

In this case a learning algorithm generates an internal
set of labels for previously seen objects. The generated la-
bels are ascertained by solving a maximum weight bipartite
matching problem.

G.1. Testing Accuracy

Calculating testing accuracy is solved at inference time
using testing samples from objects that the learning algo-
rithm has already been exposed to. Define A and B as
the set of ground truth labels and the set of labels provided
by the learning algorithm respectively until a certain learn-
ing exposure. The nodes in this matching problem are the
ground truth classes (from A) on one side and the labels
provided by the learning algorithm (from B) on the other.
The weight of an edge A−B is the number of times during
testing, that an object with a ground truth label A ∈ A was
classified as a class B ∈ B by the learning algorithm. Once
this matching has been done, the accuracy for each ground
truth class is computed using this matching. If a ground
truth class doesn’t get matched to any class in B, it gets an
accuracy of 0.

H. Additional Results
The performance of the algorithms trained from ran-

dom initialization is evidently worse than from a pre-trained
ILSVRC-2014 [3] architecture in both single and repeated
exposure settings. In the repeated exposures setting, all al-
gorithms except iCaRL-S-D and LwF show improvement
with repetition. However, there is a bigger gap between in-
cremental and batch algorithms when trained from random
initialization as compared to using pre-trained models. This
demonstrates that using a pre-trained model lead to a sig-
nificant improvement in the supervised repeated exposure
task.



0 20 40 60 80 100 120 140 160 180 200
Number of Learning Exposures

0

10

20

30

40

50

60

70

80

90

100

%
 T

es
t A

cc
ur

ac
y 

ov
er

 S
ee

n 
O

bj
ec

ts

Ground-truth UOS
Batch-S
E2EIL-S-D
E2EIL-S-ND

iCaRL-S-D
iCaRL-S-ND
LwF-S

0

20

40

60

80

100

120

140

160

180

200

U
ni

qu
e 

O
bj

ec
ts

 S
ee

n 
(U

O
S)

CRIB-Toys-200 Single Exposures

(a)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Number of Learning Exposures

0

10

20

30

40

50

60

70

80

90

100

%
 T

es
t a

cc
ur

ac
y 

ov
er

 s
ee

n 
ob

je
ct

s

Ground-truth UOS
Batch-S
E2EIL-S-D
E2EIL-S-ND

iCaRL-S-D
iCaRL-S-ND
LwF-S

0

40

80

120

160

200

U
ni

qu
e 

ob
je

ct
s 

se
en

 (U
O

S)

CRIB-Toys-200 Repeated Exposures

(b)

Figure 1: (a) Performance of LwF, iCaRL and E2EIL
trained from random initialization when presented with a
single exposure for each object instance from CRIB-Toys-
200. Standard-deviation bars were computed over 3 runs for
every experiment—each with different random orderings of
objects. (b) shows performance of the same methods with
repeated exposure.
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