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A. Overview

In the main paper, we study the relationship between ad-
versarial robustness and generalization. Based on the dis-
tinction between regular and on-manifold adversarial exam-
ples, we show that 1. regular adversarial examples leave the
underlying manifold of the data; 2. on-manifold adversar-
ial examples exist; 3. on-manifold robustness is essentially
generalization; 4. and regular robustness is independent of
generalization. For clarity and brevity, the main paper fo-
cuses on the L., attack by Madry et al. [16] and the corre-
sponding adversarial training variant applied to simple con-
volutional neural networks. For on-manifold adversarial ex-
amples, we approximate the manifold using class-specific
VAE-GANS [ 13, 18]. In this document, we present compre-
hensive experiments demonstrating that our findings gener-
alize across attacks, adversarial training variants, network
architectures and to class-agnostic VAE-GANS.

A.1. Contents

In Section B, we present additional details regarding
our experimental setup, corresponding to Section 3.1 of the
main paper: in Section B.1, we discuss details of our syn-
thetic FONTS datasets and, in Section B.2, we discuss our
VAE-GAN implementation. Then, in Section C we extend
the discussion of Section 3.2 with further results demon-
strating that adversarial examples leave the manifold. Sub-
sequently, in Section D, we show and discuss additional
on-manifold adversarial examples to supplement the exam-
ples shown in Fig. 2 of the main paper. Then, comple-
menting the discussion in Sections 3.4 and 3.5, we consider
additional attacks, network architectures and class-agnostic
VAE-GAN:S. Specifically, in Section E, we consider the Lo
variant of the white-box attack by Madry et al. [16], the Lo
white-box attack by Carlini and Wagner [2], and black-box
transfer attacks. In Section F, we present experiments on
multi-layer perceptrons and, in Section G, we consider ap-
proximating the manifold using class-agnostic VAE-GANS.
In Section H, corresponding to Section 3.6, we consider dif-

ferent variants of regular and on-manifold adversarial train-
ing. Finally, in Section I, we discuss our definition of ad-
versarial examples in the context of related work by Tsipras
et al. [21], as outlined in Section 3.5.

B. Experimental Setup

We provide technical details on the introduced synthetic
FONTS dataset, Section B.1, and our VAE-GAN imple-
mentation, Section B.2.

B.1. FONTS Dataset

Our FONTS dataset consists of randomly rotated char-
acters “A” to “J” from different fonts, as outlined in Sec-
tion 3.1 of the main paper. Specifically, we consider
1000 Google Fonts as downloaded from the corresponding
GitHub repository'. We manually exclude fonts based on
symbols, or fonts that could not be rendered correctly in
order to obtain a cleaned dataset consisting of clearly read-
able letters “A” to “J”; still, the 1000 fonts exhibit significant
variance. The obtained, rendered letters are transformed us-
ing translation, shear, scaling and rotation: for each letter
and font, we create 112 transformations, uniformly sampled
in [-0.2,0.2], [-0.5,0.5], [0.75,1.15], and [—7/2,7/2], re-
spectively. As a result, with 1000 fonts and 10 classes, we
obtain 1.12Mio images of size 28x 28, splitted into 960k
training images and 160k test images (of which we use 40k
in the main paper); thus, the dataset has four times the size
of EMNIST [3]. For simplicity, the transformations are ap-
plied using a spatial transformer network [9] by assembling
translation [¢1, 2], shear [A1, Ao], scale s and rotation r into
an affine transformation matrix,

cos(r)s —sin(r)sA;  —sin(r)s + cos(r)sA;  t1 0

cos(r)shg + sin(r)s  —sin(r)sig + cos(r)s  ta|’
making the generation process fully differentiable. Over-
all, FONTS offers full control over the manifold, i.e., the
transformation parameters, font and class, with differen-
tiable generative model, i.e., decoder.

lhttps://qithub.com/qooqle/fonts


https://github.com/google/fonts

FONTS
Random Samples

EMNIST
Random Samples

F-MNIST
Random Samples

67 &
Y
70
£5 b

-

5

3
92/
l
)

8

Figure 10: For FONTS (left), EMNIST (middle) and F-MNIST (right), we show random samples from the learned, class-
specific VAE-GANSs used to craft on-manifold adversarial examples. Our VAE-GANs generate realistic looking samples;
although we also include problematic samples illustrating the discrepancy between true and approximated data distribution.

B.2. VAE-GAN Variant

As briefly outlined in Section 3.1 of the main paper, we
use class-specific VAE-GANSs [13, 18] to approximate the
class-manifolds on all datasets, i.e., FONTS, EMNIST [3],
F-MNIST [22] and CelebA [15]. In contrast to [13], how-
ever, we use a reconstruction loss on the image, not on the
discriminator’s features; in contrast to [ 1 8], we use the stan-
dard Kullback-Leibler divergence to regularize the latent
space. The model consists of an encoder enc, approximat-
ing the posterior ¢(z|z) = p(z|z) of latent code z given
image z, a (deterministic) decoder dec, and a discrimina-
tor dis. During training, the sum of the following losses is
minimized:

Lene = Eq(z1) [z — dec(z)[1] + KL(q(z|2)Ip(2)) (2)
Lace = Eq(za) M|z — dec(2)[]1 — log(dis(dec(z)))] (3)

Lais = — Ep(a;) [IOg(dlb(x))]
- Eq(z\z) [log(l - dlS(deC(Z)))]

using a standard Gaussian prior p(z). Here, g(z|z) is mod-
eled by predicting the mean () and variance o%(z) such
that ¢(z|z) = N (z; u(z),diag(c?(x))) and the weighting
parameter \ controls the importance of the L, reconstruc-
tion loss relative to the Kullback-Leibler divergence KL
and the adversarial loss for decoder and discriminator. As
in [12], we use the reparameterization trick with one sample
to approximate the expectations in Eq. (2), (3) and (4), and
the Kullback-Leibler divergence KL(¢(z|z)|p(z)) is com-
puted analytically.

The encoder, decoder and discriminator consist of three
(four for CelebA) (de-) convolutional layers (4 x4 kernels;
stride 2; 64, 128, 256 channels), followed by ReL.U acti-
vations and batch normalization [8]; the encoder uses two
fully connected layers to predict mean and variance; the
discriminator uses two fully connected layers to predict
logits. We tuned A to dataset- and class-specific values:

“4)

on FONTS, A = 3 worked well for all classes, on EM-
NIST, A = 2.5 except for classes “0” (A = 2.75), “1”
(A = 5.6) and “8” (A = 2.25), on F-MNIST, A\ = 2.75
worked well for all classes, on CelebA A\ = 3 worked well
for both classes. Finally, we trained our VAE-GANs us-
ing ADAM [11] with learning rate 0.005 (decayed by 0.9
every epoch), weight decay 0.0001 and batch size 100 for
10, 30, 60 and 30 epochs on FONTS, EMNIST, F-MNIST
and CelebA, respectively. We also consider class-agnostic
VAE-GANS trained using the same strategy with A = 3 for
FONTS, A = 3 on EMNIST, A = 2.75 on F-MNIST and
A = 3 on CelebA, see Section G for results.

In Fig. 10, we include random samples of the class-
specific VAE-GANSs. Especially on EMNIST and FONTS,
our VAE-GANSs generate realistic looking samples with
sharp edges. However, we also show several problematic
random samples, illustrating the discrepancy between the
true data distribution and the approximation — as particu-
larly highlighted on FONTS.

C. Adversarial Example Distance to Manifold

Complementing Section 3.2 of the main paper, we pro-
vide additional details and results regarding the distance of
regular adversarial examples to the true or approximated
manifold, including a theoretical argument of adversarial
examples leaving the manifold.

On FONTS, with access to the true manifold in form of
a perfect decoder dec, we iteratively obtain the latent code
Z yielding the manifold’s closest image to the given adver-
sarial example T as

% = argmin ||Z — dec(z)||2. 6))

We use 100 iterations of ADAM [10], with a learning rate of
0.09, decayed every 10 iterations by a factor 0.95. We found
that additional iterations did not improve the results. The
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Figure 11: On FONTS (left), EMNIST (middle) and F-MNIST (right) we plot the distance of adversarial examples to the
approximated manifold. We show normalized histograms of the Lo distance of adversarial examples to their projection, as
described in the text. Regular adversarial examples exhibit a significant distance to the manifold; clearly distinguishable
from on-manifold adversarial examples and test images. We also note that, depending on the VAE-GAN approximation,
on-manifold adversarial examples are hardly distinguishable from test images.

obtained projection 7(Z) = dec(Z) is usually very close to
the original test image = for which the adversarial example
was crafted. The distance is then computed as ||Z — 7(Z)|
we refer to the main paper for results and discussion.
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If the true manifold is not available, we locally approx-
imate the manifold using 50 nearest neighbors x1, ..., Z50
of the adversarial example z. In the main paper, we center
these nearest neighbors at the test image z, i.e., consider the
sub-space spanned by x; —x. Here, we show that the results
can be confirmed when centering the nearest neighbors at
their mean & = 1/50 Z?il x; and considering the subspace
spanned by z; — ¥ instead. In this scenario, the test image
x is not necessarily part of the approximated manifold any-
more. The projection onto this sub-space can be obtained by
solving the least squares problem; specifically, we consider
the vector § = & — z, i.e., we assume that the “adversarial
direction” originates at the mean z. Then, we solve

# = axgmin | X5 — o1 (6)

where the columns X; are the vectors x; — . The projec-
tion 7(Z) is obtained as w(Z) = X 3*; the same approach
can be applied to projecting the test image x. Note that it
is crucial to consider the adversarial direction ¢ itself, in-
stead of the adversarial example Z because ||0]|2 is small
by construction, i.e., the projections of & and x are very
close. In Fig. 11, we show results using this approximation
on FONTS, EMNIST and F-MNIST. Regular adversarial
examples can clearly be distinguished from test images and
on-manifold adversarial examples. Note, however, that we
assume access to both the test image x and the correspond-
ing adversarial example  such that this finding cannot be
exploited for detection. We also notice that the discrepancy
between the distance distributions of test images and on-
manifold adversarial examples reflects the approximation
quality of the used VAE-GANS.

C.1. Intuition and Theoretical Argument

Having empirically shown that regular adversarial exam-
ples tend to leave the manifold, often in a nearly orthogonal
direction, we also discuss a theoretical argument supporting
this observation. The main assumption is that the training
loss is constant on the manifold (normally close to zero) due
to training and proper generalization, i.e., low training and
test loss. Thus, the loss gradient is approximately orthog-
onal to the manifold as this is the direction to increase the
loss most efficiently.

More formally, let f(x) denote the classifier which — for
simplicity — takes inputs = € R? and predicts outputs y €
RX for K classes. We assume both the classifier as well as
the used loss, e.g., cross-entropy loss, to be differentiable.
We further expect the data to lie on a manifold M and the
loss to be constant on M N B(z, ) with

B(z,e) = {2’ € RY: ||a' — z|| < ¢} (7
Let
9(x) = E[L(f(2),y)|x] ®

be the conditional expectation of the loss £; then, by the
mean value theorem, there exists 6(z’) € [0, 1] for each
' € M N B(z,e) such that

0=g(z') — g(x) ©)
= (Vg(0(z" )z + (1 — 0(z"))a"), 2’ — ) (10)

As this holds for all ¢ > 0 and as € — 0, every vector &’ — x
becomes a tangent of M at x and

lim Vg(0(z") + (1= 0(z'))2") = Vg(z), (A1)

it holds that Vg(z) is orthogonal to the tangent space of
M at z. As Vg(x) is the gradient of the expected loss,
it implies that adversarial examples, as computed, e.g., us-
ing first-order gradient-based approaches such as Eq. (12),
leave the manifold M in order to fool the classifier f(z).
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Figure 12: Regular and on-manifold adversarial examples on FONTS, EMNIST, F-MNIST and CelebA. On FONTS, the
manifold is known; on the other datasets, class manifolds have been approximated using VAE-GANs. Notice that the crafted
on-manifold adversarial examples correspond to meaningful manipulations of the image — as long as the learned class-
manifolds are good approximations. This can best be seen considering the (normalized) difference images (or the magnitude

thereof for CelebA).

D. On-Manifold Adversarial Examples

In Fig. 12, we show additional examples of regular and
on-manifold adversarial examples, complementing the ex-
amples in Fig. 2 of the main paper. On FONTS, both using
the true and the approximated manifold, on-manifold ad-
versarial examples reflect the underlying invariances of the
data, i.e., the transformations employed in the generation
process. This is in contrast to the corresponding regular ad-
versarial examples and their (seemingly) random noise pat-
terns. We note that regular and on-manifold adversarial ex-
amples can best be distinguished based on their difference
to the original test image — although both are perceptually
close to the original image. Similar observations hold on
EMNIST and F-MNIST. However, especially on F-MNIST
and CelebA, the discrepancy between true images and on-
manifold adversarial examples becomes visible. This is
the “cost” of approximating the underlying manifold using
VAE-GANSs. More examples can be found in Fig. 22 at the
end of this document.

E. L, and Transfer Attacks

In the main paper, see Section 3.1, we primarily focus
on the L, white-box attack by Madry et al. [16]. Here, we
further consider the Lo variant, which, given image x with
label y and classifier f, maximizes the training loss, i.e.,

mglxﬁ(f(eré),y) st [[d]]2 <e€,% €[0,1],  (12)

to obtain an adversarial example & = x + J. We use € =
1.5 for regular adversarial examples and ¢ = 0.3 for on-
manifold adversarial examples. For optimization, we utilize
projected ADAM [11]: after each iteration, Z is projected
onto the Lo-ball of radius € using

i’:f-nmx<Lf> (13)
[Z]l2

and clipped to [0, 1]. We use a learning rate of 0.005 and we
note that ADAM includes momentum, as suggested in [4].
Optimization stops as soon as the label changes, or runs for
amaximum of 40 iterations. The perturbation 0 is initialized
randomly as follows:

8
= UET7
167112

Here, U(0, 1) refers to the uniform distribution over [0, 1].
This results in § being in the e-ball and uniformly distributed
over distance and direction. Note that this is in contrast
to sampling uniformly wrt. the volume of the e-ball. The
same procedure applies to the L, attack where the projec-
tion onto the e-ball is achieved by clipping. The attack can
also be used to obtain on-manifold adversarial examples,
as described in Section 3.3 of the main paper. Then, opti-
mization in Eq. (12) is done over the perturbation ¢ in latent
space, with constraint ||(||2 < 7. The adversarial example
is obtained as & = dec(z+¢) with z being the latent code of
image = and dec being the true or approximated generative
model, i.e., decoder.

We also consider the Lo white box attack by Carlini and
Wagner [2]. Instead of directly maximizing the training
loss, Carlini and Wagner propose to use a surrogate objec-
tive on the classifier’s logits [,

F(z,y)

§ ~N(O,I),u~U(0,1). (14

= max(—k, ly(Z) — max{,(Z)). (15)
Y'FY

Compared to the training loss, which might be close to zero
for a well-trained network, F'is argued to provide more use-
ful gradients [2]. Then,

min F(z +6,) + A0z st 3 € [0,1]  (16)

is minimized by reparameterizing § in terms of & =
1/2(tanh(w)+1)—z in order to ensure the image-constraint,
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Figure 13: Lo attacks of Madry et al. [16] and Carlini and Wagner [2] on FONTS, EMNIST and F-MNIST. In all cases,
we plot regular or on-manifold success rate against test error. Independent of the attack, we can confirm that on-manifold
robustness is strongly related to generalization, while regular robustness is independent of generalization.

i.e., Z; € [0,1]. In practice, we empirically chose x = 1.5,
use 120 iterations of ADAM [ 1] with learning rate 0.005
and A = 1. Again, this attack can be used to obtain on-
manifold adversarial examples, as well.

As black-box attack we transfer L., Madry adversarial
examples from a held out model, as previously done in [14,
23, 17]. The held out transfer model is trained normally,
i.e., without any data augmentation or adversarial training,
on 10k training images for 20 epochs (as outlined in Section
3.1 of the main paper). The success rate of these transfer
attacks is computed with respect to images that are correctly
classified by both the transfer model and the target model.

Extending the discussion of Sections 3.4 and 3.5 of the
main paper, Fig. 13 shows results on FONTS, EMNIST and
F-MNIST considering both Lo attacks, i.e., Madry et al.
[16] and Carlini and Wagner [2]. In contrast to the L,
Madry attack, we observe generally lower success rates.
Nevertheless, we can observe a clear relationship between
on-manifold success rate and test error. The exact form of
this relationship, however, depends on the attack; for the Lo
Madry attack, the relationships seems to be mostly linear

(especially on FONTS and EMNIST), while it seems non-
linear for the Ly Carlini and Wagner attack. Furthermore,
the independence of regular robustness and generalization
can be confirmed, i.e., regular success rate is roughly con-
stant when test error varies — again, with the exception of
regular adversarial training. Finally, for completeness, in
Fig. 15, we illustrate that the Carlini+Wagner L5 attack also
results in regular adversarial examples leaving the manifold.

In Fig. 14, we also consider the black-box case, i.e.,
without access to the target model. While both observations
from above can be confirmed, especially on FONTS and
EMNIST, the results are significantly less pronounced. This
is mainly due to the significantly lower success rate of trans-
fer attacks — both regarding regular and on-manifold ad-
versarial examples. Especially on EMNIST and F-MNIST,
success rate may reduce from previously 80% or higher to
10% or lower. This might also explain the high variance
on EMNIST and F-MNIST regarding regular robustness.
Overall, we demonstrate that our claims can be confirmed in
both white- and black-box settings as well as using different
attacks [16, 2] and norms.
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Figure 14: Transfer attacks on FONTS, EMNIST and F-
MNIST. We show on-manifold (left) and regular success
rate (right) plotted against test error. In spite of significantly
lower success rates, transfer attacks also allow to confirm
the strong relationship between on-manifold success rate
and test error, while — at least on FONTS and EMNIST-
regular success rate is independent of test error.

F. Influence of Network Architecture

Also in relation to the discussion in Sections 3.4 and
3.5 of the main paper, Fig. 16 shows results on FONTS,
EMNIST and F-MNIST using multi-layer perceptrons in-
stead of convolutional neural networks. Specifically, we
consider a network with 4 hidden layers, using 128 hidden
units each; each layer is followed by ReLU activations and
batch normalization [8]; training strategy, however, remains
unchanged. Both of our claims, i.e., that on-manifold ro-
bustness is essentially generalization but regular robustness
is independent of generalization, can be confirmed. Espe-
cially regarding the latter, results are more pronounced us-
ing multi-layer perceptrons: except for regular adversarial
training, success rate stays nearly constant at 100% irre-
spective of test error. Overall, these results suggest that
our claims generally hold for the class of (deep) neural net-
works, irrespective of architectural details.
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Figure 15: Distance of Carlini+Wagner adversarial exam-
ples to the true, on FONTS (left), or approximated, on EM-
NIST (right), manifold. As before, we show normalized
histograms of the Lo distance of adversarial examples to
their projections onto the manifold. Even for different at-
tacks and the Lo norm, regular adversarial examples seem
to leave the manifold.

In order to further validate our claims, we also consider
variants of two widely used, state-of-the-art architectures:
ResNet-13 [7] and VGG [19]. For VGG, however, we re-
moved the included dropout layers. The main reason is that
randomization might influence robustness, e.g., see [1]. Ad-
ditionally, we only use 2 stages of model A, see [19], in or-
der to deal with the significantly lower resolution of 28 x 28
on FONTS, EMNIST and F-MNIST; finally, we only use
1024 hidden units in the fully connected layers. Fig. 17
shows results on FONTS and F-MNIST (which are signifi-
cantly more difficult than EMNIST) confirming our claims.

G. From Class Manifolds to Data Manifold

In the context of Sections 3.3 and 3.4 of the main pa-
per, we consider approximating the manifold using class-
agnostic VAE-GANs. Instead of the class-conditionals
p(zx|y) of the data distribution, the marginals p(x) are ap-
proximated, i.e., images of different classes are embedded
in the same latent space. Then, however, ensuring label in-
variance, as required by our definition of on-manifold ad-
versarial examples, becomes difficult:

Definition 1 (On-Manifold Adversarial Example). Given
the data distribution p, an on-manifold adversarial exam-
ple for x with label ¥ is a perturbed version Z such that
f(@) # ybutp(y|z) > p(y'[2)Vy # y.

Therefore, we attempt to ensure Def. 1 through a particu-
larly small L.,-constraint on the perturbation, specifically
I<lloc < m with n = 0.1 where ( is the perturbation ap-
plied in the latent space. Still, as can be seen in Fig. 18,
on-manifold adversarial examples might cross class bound-
aries, i.e., they change their actual label rendering them in-
valid according to our definition.

In Fig. 19, we clearly distinguish between on-class-
manifold and on-data-manifold adversarial training, cor-
responding to the used class-specific or -agnostic VAE-
GANs. Robustness, however, is measured wrt. on-data-
manifold adversarial examples. As can be seen, the positive
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Figure 16: Experiments with multilayer-perceptrons on
FONTS, EMNIST and F-MNIST. We plot on-manifold
(left) or regular success rate (right) against test error. On-
manifold robustness is strongly related to generalization,
while regular robustness seems mostly independent of gen-
eralization.

effect of on-manifold adversarial training diminishes when
using on-data-manifold adversarial examples during train-
ing. Both, on FONTS and EMNIST, generalization slightly
decreases in comparison to normal training because adver-
sarial examples are not useful for learning the task if la-
bel invariance cannot be ensured. When evaluating robust-
ness against on-data-manifold adversarial examples, how-
ever, the relation of on-data-manifold robustness to gener-
alization can clearly be seen. Overall, this shows that this
relationship also extends to more general, less strict defini-
tions of on-manifold adversarial examples.

H. Baselines and Adversarial Training Vari-
ants

In the main paper, see Section 3.1, we consider the ad-
versarial training variant by Madry et al. [16], i.e.,
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Figure 17: Experiments with ResNet-13 (top) and VGG
(bottom) on FONTS and F-MNIST. We plot on-manifold
(left) or regular success rate (right) against test error. As
in Fig. 16, our claims can be confirmed for these network
architectures, as well.

N
min max L(f(x, + d;w),yn), 17
w1 19l <e

where f is the classifier with weights w, L is the cross-
entropy loss and z,,, y,, are training images and labels. In
contrast to [16], we train on 50% clean and 50% adversar-
ial examples [20, 6]. The inner optimization problem is
run for full 40 iterations, as described in Section E with-
out early stopping. Here, we additionally consider the full
variant, i.e., training on 100% adversarial examples; and
the weak variant, i.e., stopping the inner optimization prob-
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Figure 18: On-manifold adversarial examples crafted us-
ing class-agnostic VAE-GANs on EMNIST. We show ex-
amples illustrating the problematic of unclear class bound-
aries within the learned manifold. On-manifold adversarial
examples are not guaranteed to be label invariant, i.e., they
may change the actual, true label according to the approxi-
mate data distribution.

lem as soon as the label changes. Additionally, we consider
random perturbations as baseline, i.e., choosing the pertur-
bations ¢ uniformly at random without any optimization.
The same variants and baselines apply to on-manifold ad-
versarial training and adversarial transformation training.

In Section 3.6 of the main paper, we observed that dif-
ferent training strategies might exhibit different robustness-
generalization characteristics. For example, regular adver-
sarial training renders the learning problem harder: in addi-
tion to the actual task, the network has to learn (seemingly)
random but adversarial noise directions leaving the mani-
fold. In Fig. 20, we first show that training on randomly per-
turbed examples (instead of adversarially perturbed ones)
is not effective, neither in image space nor in latent space.
This result highlights the difference between random and
adversarial noise, as also discussed in [5]. For regular ad-
versarial training, the strength of the adversary primarily
influences the robustness-generalization trade-off; for ex-
ample, the weak variant increases generalization while re-
ducing robustness. Note that this effect also depends on
the difficulty of the task, e.g., FONTS is considerably more
difficult than EMNIST. For on-manifold adversarial train-
ing, in contrast, the different variants have very little effect;
generalization is influenced only slightly, while regular ro-
bustness is — as expected — not influenced.

I. Definition of Adversarial Examples

Adversarial examples are assumed to be label-invariant,
i.e., the actual, true label does not change. For images, this
is usually enforced using a norm-constraint on the perturba-
tion — e.g., cf. Eq. (12); on other modalities, however, this
norm-constraint might not be sufficient. In Section 3.3 of
the main paper, we provide a definition for on-manifold ad-
versarial examples based on the true, underlying data distri-
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Figure 19: Test error and on-data-manifold success rate on
FONTS and EMNIST. Using class-agnostic VAE-GANS,
without clear class boundaries, on-manifold adversarial
training looses its effectiveness — the on-manifold adver-
sarial examples cross the true class boundaries too often.
The strong relationship between on-manifold robustness
and generalization can still be confirmed.

bution — as restated in Def. 1. Here, we use this definition to
first discuss a simple and intuitive example before consid-
ering the theoretical argument of [21], claiming that robust
and accurate models are not possible on specific datasets;
an argument in contradiction to our results

Let the observations x and labels y be drawn from a data
distribution p, i.e., z,y ~ p(x,y). Then, given a classifier
f we define adversarial examples as follows:

Definition 2 (Adversarial Example). Given the data dis-
tribution p, an adversarial example for = with label y is
a perturbed version Z such that f(Z) # y but p(y|Z) >
p(y'[2)Vy # y.

In words, adversarial examples must not change the actual,
true label wrt. the data distribution. Note that this definition
is identical to Def. 1 for on-manifold adversarial examples.
For the following toy examples, however, the data distribu-
tion has non-zero probability on the whole domain or we
only consider adversarial examples Z with p(Z) > 0 such
that Def. 2 is well-defined. We leave a more general defini-
tion of adversarial examples for future work.

We illustrate Def. 2 on an intuitive, binary classification
task. Specifically, the classes y = 1 and y = —1 are uni-
formly distributed, i.e., p(y = 1) = p(y = —1) = 0.5 and
observations are drawn from point masses on 0 and e:
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Figure 20: Adversarial training variants and baselines on
FONTS and EMNIST. For adversarial training, we consider
the full variant, i.e., training on 100% adversarial examples,
and the weak variant, i.e., stopping the inner optimization
problem of Eq. (17) as son as the first adversarial example
is found. For regular adversarial training, the strength of the
adversary determines the robustness-generalization trade-
off; for on-manifold adversarial training, the ideal strength
depends on the approximation quality of the used VAE-
GANsS.

plz=0y=1)=1 (18)
plx=¢ey=-1)=1 19)
This problem is linearly separable for any € > 0; however, it
seems that no classifier will be adversarially robust against
perturbations of absolute value e. For simplicity, we con-
sider the observation z = 0 with y = 1 and the adversarial
example £ = x + ¢ = €. Then, verifying Def. 2 yields a
contradiction:

O=ply=1llz=c¢) $ply=—-1llz=¢=1. (20
It turns out, & = ¢ is not a proper adversarial example. This
example illustrates that an exact definition of adversarial ex-
amples, e.g., Def. 2, is essential to study the robustness of
such toy datasets.

I.1. Discussion of [21]

In [21], Tsipras et al. argue that there exists an inher-
ent trade-off between regular robustness and generalization
based on a slightly more complex toy example; we follow
the notation in [21]. Specifically, for labels y = 1 and

oy:—l

xy:l

-1 0 1

z1

Figure 21: Illustration of the toy dataset considered by
Tsipras et al. in [21] and defined in Eq. (21). For labels
y = land y = —1, the two-dimensional observations
x € {—1,1} xR are plotted. The first dimension, i.e., z1,
mirrors the label with probability 0.9; the second dimen-
sion, i.e., w9, is drawn from a Gaussian N (y3,1), i.e.,
from the text is 3. As illustrated on the left, perturbing an

observation x with label y = 1 but x; = —1by 2n = 6
results in an adversarial example Z indistinguishable from
observations with label y = —1.

y = —1withp(y = 1) = p(y = —1) = 0.5, the obser-
vations z € {—1,1} xR are drawn as follows’:

plaly) =7 . ,
1—p ifz;=—y 1)

p(xaly) = N(w2;yn, 1)

where 7 defines the degree of overlapping between the two
classes and p > 0.5. Fig. 21 illustrates this dataset for p =
0.9 and n = 3. For a L,,-bounded adversary with € > 27,
Tsipras et al. show that no model can be both accurate and
robust. Specifically, for x with y = 1 but £y = —1 and
x9 = 1, we consider replacing o with 9 = 22 — 21 =
—n, as considered in [21]. However, this adversary does
not produce proper adversarial examples according to our
definition. Indeed,

ife; =y

p(y =1z = 7)
=p(y =1z =-1) p(y = 1wz = —n)
=(1—=p)-N(z2=-mn,1)
#p-N(wy=—n;-n,1)
=ply=—1z1=-1) - ply = —1lz2 = —n)
=ply=-1z=1)
(22)
which contradicts our definition. Thus, in light of Def. 2, the

suggested trade-off of Tsipras et al. is questionable. How-
ever, we note that this argument explicitly depends on our

2Note that, for simplicity and convenience, we consider the 2-
dimensional case; Tsipras et al. consider the general D-dimensional case,
where 21 remains unchanged and x2, ...,z p are drawn from the corre-
sponding Gaussian, cf. (21).
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Figure 22: Regular and on-manifold adversarial examples on FONTS, EMNIST, F-MNIST and CelebA. On FONTS, the
manifold is known; otherwise, class manifolds have been approximated using VAE-GANs. In addition to the original test
images, we also show the adversarial examples and their (normalized) difference (or the magnitude thereof for CelebA).

definition of proper and invalid adversarial examples, i.e.,
Def. 2; other definitions of adversarial examples or adver-
sarial robustness, e.g., in the context of the adversarial loss

defined in [

], may lead to different conclusions.
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