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1. Theoretical Insights
In this section, we give some theoretical insights about

why the synergy mechanism in our DKS method shows bet-
ter performance than the Deeply-Supervised (DS) learning
method [5, 7]. For simplicity, we focus on the optimiza-
tion of a CNN regression model with one auxiliary branch.
Inspired by [6], we give a formal proof for that the pair-
wise synergy term behaves as a regularizer which penalizes
the inconsistency between the gradients of the two branches
w.r.t. their shared intermediate feature map. Such a proof
can be generalized to the optimization of a deep CNN clas-
sification model.

Suppose we need to train a CNN model to fit target
data distribution x, y ∼ D where x denotes the input and
y denotes the expected output. The model has two out-
put heads, the top-most one ŷ1 and the auxiliary one ŷ2
as illustrated in Fig. 1. The forward process is as follows,
z = f(x), ŷ1 = g1(z), ŷ2 = g2(z), where z denotes the in-
termediate feature map. In DS configuration, the loss func-
tion used to guide the training process can be written as

LDS = E
x,y∼D, ε

(
1

2
||g1(z + ε)− y||2

+
1

2
||g2(z + ε)− y||2

)
,

where ε denotes the random perturbations on the interme-
diate feature map caused by data augmentation. Here, we
assume E(ε) = 0, E(ε2) = σ2. In DKS configuration, the
loss function can be written as

LDKS = E
x,y∼D, ε

(
1

2
||g1(z + ε)− y||2

+
1

2
||g2(z + ε)− y||2 + 1

2
||g1(z + ε)− g2(z + ε)||2

)
.
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Proposition 1. The synergy term in DKS guarantees more
consistent gradients of the two branches w.r.t. z compared

with DS. That is, the synergy term penalizes
∣∣∣∣∣∣∂ŷ1∂z − ∂ŷ2

∂z

∣∣∣∣∣∣2.

Proof. The synergy term in DKS:

E
x,y∼D, ε

(
1

2
||g1(z + ε)− g2(z + ε)||2

)
= E
x,y∼D, ε

(
1

2

∣∣∣∣∣∣∣∣g1(z) + ε
∂g1(z)

∂z
+O(ε2)

− g2(z)− ε
∂g2(z)

∂z
+O(ε2)

∣∣∣∣∣∣∣∣2
)

=
1

2
E

x,y∼D

(
||g1(z)− g2(z)||2

)
+ E(ε) E

x,y∼D

(
||g1(z)− g2(z)|| ·

∣∣∣∣∣∣∣∣∂g1(z)∂z
− ∂g2(z)

∂z
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+

1

2
E(ε2) E

x,y∼D

(∣∣∣∣∣∣∣∣∂g1(z)∂z
− ∂g2(z)

∂z

∣∣∣∣∣∣∣∣2
)

+O(ε4)

=
1

2
E

x,y∼D

(
||g1(z)− g2(z)||2

)
+

1

2
σ2 E

x,y∼D

(∣∣∣∣∣∣∣∣∂g1(z)∂z
− ∂g2(z)

∂z

∣∣∣∣∣∣∣∣2
)

+O(ε4)

2. Design Details of Auxiliary Classifiers

As we described in the paper, we append carefully de-
signed auxiliary classifiers on top of some intermediate lay-
ers of a given backbone network when applying our DKS
method to CIFAR-100 and ImageNet classification datasets.
In this section, we provide the design details of the auxiliary
classifiers.



Figure 1: The regression model used in the proof.

2.1. Auxiliary Classifiers for CIFAR-100

On the CIFAR-100 dataset, we test several kinds of
backbone networks including ResNets [1], DenseNets [4],
WRNs [8] and MobileNet [2]. In this sub-section, we de-
scribe the auxiliary classifiers used in the Section 4.1, the
Section 4.3 ‘Analysis of Auxiliary Classifiers’, ‘DKS on
Very Deep Network’, ‘DKS with Strong Regularization’
and ‘DKS on Noisy Data’ of our paper, respectively.

2.1.1 Auxiliary Classifiers Used in Section 4.1

Locations. In the experiments, we add two auxiliary clas-
sifiers to every backbone network. Their locations for dif-
ferent backbone networks are shown in Fig.2.

Structures. In the experiments, we append relatively
complex auxiliary supervision branches on top of certain
intermediate layers during network training. Specifically,
every auxiliary supervision branch is composed of the same
building block (e.g., residual block in ResNet) as in the
backbone network. The differences lie in the numbers and
parameter sizes of convolutional layers. As empirically ver-
ified in [3], early layers lack coarse-level features which are
helpful for image-level classification. In order to address
this problem, we use a heuristic principle making the paths
from the input to all classifiers have the same number of
down-sampling layers. We detail the hyper-parameter set-
tings of the convolutional layers of different backbone net-
works in Table 2, Table 3, Table 4 and Table 5, respectively.

2.1.2 Auxiliary Classifiers Used in Section 4.3 ‘Analy-
sis of Auxiliary Classifiers’

In order to analyze the impact of the complexity of aux-
iliary classifiers, we evaluate different auxiliary classifier
designs for ResNet-32 in the Section 4.3 ‘Analysis of Aux-
iliary Classifiers’.
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Figure 2: Locations of the auxiliary classifiers added to the
backbone networks evaluated on the CIFAR-100 dataset.
The left figure is for ResNets and WRNs, and the mid-
dle figure is for DenseNets, and the right figure is for Mo-
bileNet. The grey thick arrows indicate the locations where
auxiliary classifiers are added. We denote these three classi-
fiers as C1, C2 and C3 respectively, where C1 is the original
classifier of the backbone network.

Locations. The locations are the same as that described in
Fig. 2.

Structures. As described in the Table 3 of our paper, we
evaluated four more types of auxiliary classifiers besides
our final design. AP+2FC refers to one average pooling
layer + two fully connected layers. AP+1Conv+2FC refers
to one average pooling layer + one convolutional layer +
two fully connected layers. Narrow Blocks means the aux-
iliary classifiers are narrower than the original design (i.e.,
the top-most classifier connected to the last layer of the
backbone network). Shallow Blocks means the auxiliary
classifiers are shallower than the original design. Please re-
fer to Fig. 3 and Table 6 for more details.

2.1.3 Auxiliary Classifiers Used in Section 4.3 ‘DKS on
Very Deep Network’

We conduct a set of experiments to analyze the performance
of DKS on very deep CNNs. In the experiments, we con-
sider the training of a ResNet variant with 1202 layers [1]
on the CIFAR-100 dataset. Unlike auxiliary classifiers used
in the other experiments, we study DKS with shallow but
wide auxiliary classifiers in the experiments.

Locations. In the experiments, we add three auxiliary
classifiers to the ResNet-1202 backbone network. Their lo-
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Figure 3: Details of the AP+2FC and AP+1Conv+2FC aux-
iliary classifiers added to the ResNet-32 backbone network
evaluated on the CIFAR-100 dataset. The output size of the
average pooling layer is 4× 4. The number of output chan-
nels of every layer is shown in the parentheses.

C2 C3 C4

conv1 512 256 128
conv2 - 512 256
conv3 - - 512

Table 1: Details of the convolutional layers of the auxil-
iary classifiers added to the ResNet-1202 backbone network
evaluated on the CIFAR-100 dataset. In the table, the num-
ber in every cell indicates how many filters are in this con-
volutional layer. For example, C3 has two convolutional
layers where the first layer has 256 filters and the second
layer has 512 filters.

cations are shown in Fig.4a.

Structures. The auxiliary classifiers added to the ResNet-
1202 backbone network have the macro-structures defined
in Fig.4b. The number of convolutional layers for every
auxiliary classifier can be found in Table 1.

2.2. Auxiliary Classifiers for ImageNet

On the ImageNet classification dataset, we use popular
ResNet-18, ResNet-50 and ResNet-152 [1] as the backbone
networks. In this sub-section, we describe the auxiliary
classifiers used in the Section 4.2 and some experiments of
Section 4.3 of our paper.

Locations. In the experiments, we add at most 3 auxiliary
classifiers to every backbone network. Following the def-
inition in our paper, we denote the original classifier (i.e.,
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Figure 4: (a) Locations of the auxiliary classifiers added
to the ResNet-1202 backbone network evaluated on the
CIFAR-100 dataset. The grey thick arrows indicate the
layer locations where auxiliary classifiers are added. We
denote these three auxiliary classifiers as C2, C3 and C4,
respectively. (b) Structure of the auxiliary classifiers. All
the convolutional layers in this structure have the same ker-
nel size (= 3×3) and the same stride (= 1), but have different
number of filters (yielding different number of output chan-
nels). The numbers of convolutional layers and the corre-
sponding filters for every auxiliary classifier can be found
in Table 1.

the top-most classifier added to the last layer of a backbone
network) as C1 and the auxiliary classifiers as C2, C3 and
C4, as shown in Fig.5. Recall that C4 is an extra auxiliary
classifier which is added for analyzing the accuracy effect
of the increasing number of the auxiliary classifiers, as de-
scribed in Table 4 of our paper. For the main experiments in
the Section 4.2 of our paper, we add 2 auxiliary classifiers
(i.e., C2 and C3) to every backbone network.

Structures. In all of the experiments except for the one
regarding Fig.3 ‘DS with simple aux. classifiers’ of our
paper, the auxiliary classifiers added to all backbone net-
works have the same macro-structure. Generally, we design
these auxiliary classifiers with the same building blocks as
the backbone network. To guarantee that all the paths from
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Figure 5: Locations of the auxiliary classifiers added to the
ResNet backbone networks evaluated on the ImageNet clas-
sification dataset. The grey thick arrows indicate the loca-
tions where auxiliary classifiers are added. Following the
definition in our paper, we denote these three auxiliary clas-
sifiers as C2, C3 and C4, respectively.

the input to different classifier outputs have the same down-
sampling process, we design the auxiliary classifiers ac-
cording to the corresponding building blocks in the back-
bone network. For example, the auxiliary classifier C3

has its own conv 4x and conv 5x blocks acting as down-
sampling stages, whose parameter size is smaller than that
of the corresponding stages in the backbone network. After
these down-sampling stages, there are also a global average
pooling layer and a fully connected layer. We show the de-
tails of the convolutional blocks of the auxiliary classifiers
in Table 7.

In the experiment regarding Fig.3 ‘DS with simple aux.
classifiers’ of our paper, we use a very simple structure as
suggested in [5] for the auxiliary classifiers. The structure
is shown in Fig.6. Specifically, the hyper-parameters of the
average pooling layer in C2 are kernel size = 5× 5, stride =
3 and padding = 1, and in C3 are kernel size = 7×7, stride =
7 and padding = 3. The feature map with size of 4×4×256
or 4×4×128 is fed into its respective fully connected layer
with a Softmax function for final predication.

FC(1000)

Average pooling

Figure 6: Structure of the simple auxiliary classifiers added
to the ResNet-18 backbone network evaluated on the Ima-
geNet classification dataset. The average pooling layer will
down-sample the input feature map into a new one with the
spatial size of 4×4. Then the feature map will be flattened
to be a one-dimensional vector which will be fed into the
fully connected layer. Here, the purple circle denotes the
Softmax layer which will output a probability distribution.

3. Accuracy Curves of ResNet Models Trained
on ImageNet

Fig. 7 shows the curves of Top-1 training error and test
error of the ResNet models trained on the ImageNet classifi-
cation dataset. Compared with the standard training scheme
and DS, it can be seen that DKS has the worst training
accuracy but the best test accuracy for all backbone net-
works, showing better capability to suppress over-fitting
during training.
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Figure 7: Curves of Top-1 training error (dashed line) and test error (solid line) on the ImageNet classification dataset with
ResNet-18 (a), ResNet-50 (b) and ResNet-152 (c).

ResNet(d=32) ResNet(d=110)
C1 C3 C2 C1 C3 C2

conv1 3× 3, 16 - - 3× 3, 16 - -

conv2 x
[
3× 3, 16
3× 3, 16

]
× 5 - -

[
3× 3, 16
3× 3, 16

]
× 18 - -

conv3 x
[
3× 3, 32
3× 3, 32

]
× 5

[
3× 3, 32
3× 3, 32

]
× 5 -

[
3× 3, 32
3× 3, 32

]
× 18

[
3× 3, 32
3× 3, 32

]
× 9 -

conv4 x
[
3× 3, 64
3× 3, 64

]
× 5

[
3× 3, 64
3× 3, 64

]
× 3

[
3× 3, 128
3× 3, 128

]
× 5

[
3× 3, 64
3× 3, 64

]
× 18

[
3× 3, 64
3× 3, 64

]
× 9

[
3× 3, 128
3× 3, 128

]
× 18

Table 2: Details of the convolutional blocks of the auxiliary classifiers added to the ResNet backbone networks evaluated on
the CIFAR-100 dataset. In the table, every cell shows the number of building blocks and the corresponding number of output
channels.

WRN-28-4 WRN-28-10
C1 C3 C2 C1 C3 C2

conv1 3× 3, 16 - - 3× 3, 16 - -

conv2 x
[
3× 3, 64
3× 3, 64

]
× 4 - -

[
3× 3, 160
3× 3, 160

]
× 4 - -

conv3 x
[
3× 3, 128
3× 3, 128

]
× 4

[
3× 3, 128
3× 3, 128

]
× 4 -

[
3× 3, 320
3× 3, 320

]
× 4

[
3× 3, 320
3× 3, 320

]
× 4 -

conv4 x
[
3× 3, 256
3× 3, 256

]
× 4

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 512
3× 3, 512

]
× 4

[
3× 3, 640
3× 3, 640

]
× 4

[
3× 3, 640
3× 3, 640

]
× 2

[
3× 3, 1280
3× 3, 1280

]
× 4

Table 3: Details of the convolutional blocks of the auxiliary classifiers added to the WRN backbone networks evaluated on
the CIFAR-100 dataset. In the table, every cell shows the number of building blocks and the corresponding number of output
channels.

DenseNet(d=40,k=12) DenseNet(d=100,k=12)
C1 C3 C2 C1 C3 C2

conv1 3× 3, 24 - - 3× 3, 24 - -
conv2 x

[
3× 3, 12

]
× 12 - -

[
3× 3, 12

]
× 32 - -

conv3 x
[
3× 3, 12

]
× 12

[
3× 3, 12

]
× 12 -

[
3× 3, 12

]
× 32

[
3× 3, 12

]
× 16 -

conv4 x
[
3× 3, 12

]
× 12

[
3× 3, 12

]
× 6

[
3× 3, 36

]
× 12

[
3× 3, 12

]
× 32

[
3× 3, 12

]
× 16

[
3× 3, 36

]
× 32

Table 4: Details of the convolutional blocks of the auxiliary classifiers added to the DenseNet backbone networks evaluated
on the CIFAR-100 dataset. In the table, every cell shows the number of building blocks and the corresponding growth rate.



C1 32 64 128 128 256 256 (512,s2) 512 × 5 (1024,s2), 1024
C3 - - - - - - (512,s2) 512 × 3 (1024,s2), 1024
C2 - - - - - - - - (2048,s2), 2048

Table 5: Details of the convolutional blocks of the auxiliary classifiers added to the MobileNet backbone network evaluated
on the CIFAR-100 dataset. In the table, every cell shows the number of output channels, and s2 denotes the stride of the
convolution operation in this layer is 2.

Original Narrow Shallow
C1 C3 C2 C3 C2 C3 C2

conv1 3× 3, 16 - - - - - -

conv2 x
[
3× 3, 16
3× 3, 16

]
× 5 - - - - - -

conv3 x
[
3× 3, 32
3× 3, 32

]
× 5

[
3× 3, 32
3× 3, 32

]
× 5 -

[
3× 3, 16
3× 3, 16

]
× 5 -

[
3× 3, 32
3× 3, 32

]
× 2 -

conv4 x
[
3× 3, 64
3× 3, 64

]
× 5

[
3× 3, 64
3× 3, 64

]
× 3

[
3× 3, 128
3× 3, 128

]
× 5

[
3× 3, 32
3× 3, 32

]
× 3

[
3× 3, 64
3× 3, 64

]
× 5

[
3× 3, 64
3× 3, 64

]
× 1

[
3× 3, 128
3× 3, 128

]
× 2

Table 6: Details of the narrow and shallow auxiliary classifiers added to the ResNet-32 backbone network evaluated on the
CIFAR-100 dataset. In the table, every cell shows the number of building blocks and the corresponding number of output
channels.

ResNet-18 ResNet-50 ResNet-152
C2 C3 C4 C2 C3 C2 C3

conv3 x - -
[
3× 3, 128
3× 3, 128

]
× 1 - - - -

conv4 x -
[
3× 3, 256
3× 3, 256

]
× 1

[
3× 3, 256
3× 3, 256

]
× 1 -

 1× 1, 256
3× 3, 256
1× 1, 1024

× 3 -

 1× 1, 256
3× 3, 256
1× 1, 1024

× 18

conv5 x
[
3× 3, 1024
3× 3, 1024

]
× 2

[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 2

1× 1, 1024
3× 3, 1024
1× 1, 4096

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 2

1× 1, 1024
3× 3, 1024
1× 1, 4096

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 2

Table 7: Details of the convolutional blocks of the auxiliary classifiers added to the ResNet backbone networks evaluated
on the ImageNet classification dataset. In the table, every cell shows the corresponding number of convolutional blocks
(including basic blocks for ResNet-18, and bottleneck blocks for ResNet-50 and ResNet-152) and their parameter sizes. For
comparison with the backbone networks, please refer to the Table 1 of the ResNet paper [1].


