
Meta-Transfer Learning for Few-Shot Learning
Supplementary Materials

Qianru Sun1,3∗ Yaoyao Liu2∗ Tat-Seng Chua1 Bernt Schiele3

1National University of Singapore 2Tianjin University†

3Max Planck Institute for Informatics, Saarland Informatics Campus

{qsun, schiele}@mpi-inf.mpg.de
liuyaoyao@tju.edu.cn {dcssq, dcscts}@nus.edu.sg

These supplementary materials include the details of
network architecture (§A), implementation (§B), FC100
dataset splits (§C), standard variance analysis (§D), addi-
tional ablation results (§E), and some interpretation of our
meta-learned model (§F). In addition, our open-source code
is on GitHub1.

A. Network architectures
In Figure S1, we present the 4CONV architecture for

feature extractor Θ, as illustrated in Section 5.1 “Network
architecture” of the main paper.

In Figure S2, we present the other architecture – ResNet-
12. Figure S2(a) shows the details of a single residual block
and Figure S2(b) shows the whole network consisting of
four residual blocks and a mean-pooling layer.

The input of Θ is the 3-channel RGB image, and the out-
put is the 512-dimensional feature vector. a = 0.1 is set for
all leakyReLU activation functions in ResNet-12.

B. Implementation details
For the phase of DNN training on large-scale data, the

model is trained by Adam optimizer [2]. Its learning rate is
initialized as 0.001, and decays to its half every 5k iterations
until it is lower that 0.0001. We set the keep probability of
the dropout as 0.9 and batch-size as 64. The pre-training
stops after 10k iterations. Note that for the hyperparame-
ter selection, we randomly choose 550 samples each class
as the training set, and the rest as validation. After the grid
search of hyperparameters, we fix them and mix up all sam-
ples (64 classes, 600 samples each class), in order to do the
final pre-training. Besides, these pre-training samples are
augmented with horizontal flip.

∗Equal contribution.
†Yaoyao Liu did this work during his internship at NUS.
1https://github.com/y2l/meta-transfer-learning-tensorflow

For the meta-train phase, we sample 5-class, 1-shot (5-
shot or 10-shot) episodes to contain 1 (5 or 10) sample(s) for
episode training, and 15 samples for episode test uniformly,
following the setting of MAML [1]. The base-learner θ is
optimized by batch gradient descent with the learning rate
of 0.01. It gets updated with 20 and 60 epochs respectively
for 1-shot and 5-shot tasks on the miniImageNet dataset,
and 20 epochs for all tasks on the FC100 dataset. The meta-
learner, i.e., the parameters of the SS operations, is opti-
mized by Adam optimizer [2]. Its learning rate is initialized
as 0.001, and decays to the half every 1k iterations until
0.0001. The size of meta-batch is set to 2 (tasks) due to the
memory limit.

Using our HT meta-batch strategy, hard tasks are sam-
pled every time after running 10 meta-batches, i.e., the fail-
ure classes used for sampling hard tasks are from 20 tasks.
The number of hard task is selected for different settings by
validation: 10 and 4 hard tasks respectively for the 1-shot
and 5-shot experiments on the miniImageNet dataset; and
respectively 20, 10 and 4 hard tasks for the 1-shot, 5-shot
and 10-shot experiments on the FC100 dataset.

For the meta-test phase, we sample 5-class, 1-shot (5-
shot or 10-shot) episodes and each episode contains 1 (5 or
10) sample(s) for both episode train and episode test. On
each dataset, we sample 600 meta-test tasks. All these set-
tings are exactly the same as MAML [1].

C. Super-class splits on FC100
In this section, we show the details of the FC100 splits

according to the super-class labels, same with TADAM [3].
Training split super-class indexes: 1, 2, 3, 4, 5,
6, 9, 10, 15, 17, 18, 19; and corresponding labels:
fish, flowers, food containers, fruit and vegetables, house-
hold electrical devices, household furniture, large man-
made outdoor things, large natural outdoor scenes, rep-
tiles, trees, vehicles 1, vehicles 2.

https://github.com/y2l/meta-transfer-learning-tensorflow

Validation split super-class indexes: 8, 11, 13,
16; and corresponding labels: large carnivores,
large omnivores and herbivores, non-insect invertebrates,
small mammals.

Test split super-class indexes: 0, 7, 12, 14; and correspond-
ing labels: aquatic mammals, insects, medium mammals,
people.

An episode (task) is independently sampled from a cor-
responding split, e.g. a meta-train episode contains 5 classes
that can only be belonging to the 12 super-classes in the
training split. Therefore, there is no fine-grained informa-
tion overlap between meta-train and meta-test tasks.

D. Standard variance analysis

The final accuracy results reported in our main paper are
the mean values and standard variances of the results of 600
meta-test tasks. The standard variance is affected by the
number of episode test samples. As introduced in §B, we
use the same setting as MAML [1] which used a smaller
number of samples for episode test (1 sample for 1-shot
episode test and 5 samples for 5-shot), making the result
variance higher. Other works that used more samples for
episode test got lower variances, e.g., TADAM [3] used 100
samples and its variances are about 1

6 and 1
3 of MAML’s

respectively for miniImageNet 1-shot and 5-shot.
In order to have a fair comparison with TADAM in terms

of this issue, we supplement the experiments using 100
episode test samples at the meta-test. We get the new con-
fidence intervals (using our method: MTL w/o HT meta-
batch) as 0.71% (0.3% for TADAM) and 0.54% (0.3% for
TADAM) respectively for 1-shot and 5-shot on the mini-
ImageNet dataset, and 0.70% (0.4% for TADAM), 0.63%
(0.4% for TADAM) and 0.58% (0.5% for TADAM) respec-
tively for 1-shot, 5-shot and 10-shot on the FC100 dataset.

E. Additional ablation study

We supplement the results in Table S1, for the compar-
isons mentioned in Section 5.1 of main paper. Red numbers
on the bottom row are copied from the main paper (corre-
sponding to the MTL setting: SS Θ, meta-batch) and shown
here for the convenience of comparison.

To get the first row, we train 4CONV net by large-scale
data (same to the pre-training of ResNet-12) and get infe-
rior results, as we declared in the main paper. Results on
the second and third rows show the performance drop when
changing the single FC layer θ to multiple layers, e.g. 2 FC
layers and 3 FC layers. Results on the fourth row show the
performance drop when updating both Θ and θ for the base-
learning. The reason is that Θ has too many parameters to
update with too little data.

F. Interpretation of meta-learned SS
In Figure S3, we show the statistic histograms of learned

SS parameters, taking miniImageNet 1-shot as an exam-
ple setting. Scaling parameters ΦS1

are initialized as 1
and shifting parameters ΦS1

as 0. After meta-train, we
observe that these statistics are close to Gaussian distri-
butions respectively with (0.9962, 0.0084) and (0.0003,
0.0002) as (mean, variance) values, which shows that the
uniform initialization has been changed to Gaussian distri-
bution through few-shot learning. Possible interpretations
are in three-fold: 1) majority patterns trained by a large
number of few-shot tasks are close to the ones trained by
large-scale data; 2) tail patterns with clear scale and shift
values are the ones really contributing to adapting the model
to few-shot tasks; 3) tail patterns are of small quantity, en-
abling the fast learning convergence.

References
[1] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. In ICML, 2017.
1, 2

[2] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv, 1412.6980, 2014. 1

[3] B. N. Oreshkin, P. Rodrı́guez, and A. Lacoste. TADAM: task
dependent adaptive metric for improved few-shot learning. In
NeurIPS, 2018. 1, 2

Meta-learning Base-learning FC dim of θ Feature extractor
miniImageNet FC100

1-shot 5-shot 1-shot 5-shot 10-shot

ΦS1 , ΦS2 θ 5 4 CONV (pre) 45.6 ± 1.8 61.2 ± 0.9 38.0 ± 1.6 46.4 ± 0.9 56.5 ± 0.8

ΦS1 , ΦS2 θ (2-layer) 512, 5 ResNet-12 (pre) 59.1 ± 1.9 70.7 ± 0.9 40.3 ± 1.9 53.3 ± 0.9 54.1 ± 0.8
ΦS1 , ΦS2 θ (3-layer) 1024, 512, 5 ResNet-12 (pre) 56.2 ± 1.8 68.7 ± 0.9 40.0 ± 1.8 52.3 ± 1.0 53.8 ± 0.8

ΦS1 , ΦS2 Θ, θ 5 ResNet-12 (pre) 59.6 ± 1.8 71.6 ± 0.9 43.3 ± 1.9 54.6 ± 1.0 60.7 ± 0.8

ΦS1 , ΦS2 θ 5 ResNet-12 (pre) 60.2 ± 1.8 74.3 ± 0.9 43.6 ± 1.8 55.4 ± 0.9 62.4 ± 0.8

Table S1. Additional ablative study. On the last row, we show the red numbers which are reported in our main paper (corresponding to the
MTL setting: SS [Θ; θ], meta-batch).

3 × 3 conv, 32 filters
batch norm,

ReLU,
2 × 2 max-pool

3 × 3 conv, 32 filters
batch norm,

ReLU,
2 × 2 max-pool

3 × 3 conv, 32 filters
batch norm,

ReLU,
2 × 2 max-pool

3 × 3 conv, 32 filters
batch norm,

ReLU,
2 × 2 max-pool

Figure S1. Network architecture of 4CONV

3 × 3 conv, D filters
batch norm,
leaky ReLU

3 × 3 conv, D filters
batch norm,
leaky ReLU

3 × 3 conv, D filters
batch norm,
leaky ReLU

1 × 1 conv, D filters

2 × 2 max-pool
dropout

(a) Residual block, D filters

(b) Feature extractor

Residual block
64 filters

Residual block
128 filters

Residual block
256 filters

Residual block
512 filters 5 × 5 mean pool

Figure S2. Network architecture of ResNet-12

≤0
.5

0
(0

.5
1

, 0
.5

2
]

(0
.5

3
, 0

.5
4

]
(0

.5
5

, 0
.5

6
]

(0
.5

7
, 0

.5
8

]
(0

.5
9

, 0
.6

0
]

(0
.6

1
, 0

.6
2

]
(0

.6
3

, 0
.6

4
]

(0
.6

5
, 0

.6
6

]
(0

.6
7

, 0
.6

8
]

(0
.6

9
, 0

.7
0

]
(0

.7
1

, 0
.7

2
]

(0
.7

3
, 0

.7
4

]
(0

.7
5

, 0
.7

6
]

(0
.7

7
, 0

.7
8

]
(0

.7
9

, 0
.8

0
]

(0
.8

1
, 0

.8
2

]
(0

.8
3

, 0
.8

4
]

(0
.8

5
, 0

.8
6

]
(0

.8
7

, 0
.8

8
]

(0
.8

9
, 0

.9
0

]
(0

.9
1

, 0
.9

2
]

(0
.9

3
, 0

.9
4

]
(0

.9
5

, 0
.9

6
]

(0
.9

7
, 0

.9
8

]
(0

.9
9

, 1
.0

0
]

(1
.0

1
, 1

.0
2

]
(1

.0
3

, 1
.0

4
]

(1
.0

5
, 1

.0
6

]
(1

.0
7

, 1
.0

8
]

(1
.0

9
, 1

.1
0

]
(1

.1
1

, 1
.1

2
]

(1
.1

3
, 1

.1
4

]
(1

.1
5

, 1
.1

6
]

(1
.1

7
, 1

.1
8

]
(1

.1
9

, 1
.2

0
]

(1
.2

1
, 1

.2
2

]
(1

.2
3

, 1
.2

4
]

(1
.2

5
, 1

.2
6

]
(1

.2
7

, 1
.2

8
]

(1
.2

9
, 1

.3
0

]
(1

.3
1

, 1
.3

2
]

(1
.3

3
, 1

.3
4

]
(1

.3
5

, 1
.3

6
]

(1
.3

7
, 1

.3
8

]
(1

.3
9

, 1
.4

0
]

(1
.4

1
, 1

.4
2

]
(1

.4
3

, 1
.4

4
]

(1
.4

5
, 1

.4
6

]
(1

.4
7

, 1
.4

8
]

(1
.4

9
, 1

.5
0

]

0

1000

2000

3000

4000

5000

6000

7000

8000

≤
-0

.0
5

(-
0.

05
, -

0.
05

]

(-
0.

05
, -

0.
04

]

(-
0.

04
, -

0.
04

]

(-
0.

04
, -

0.
03

]

(-
0.

03
, -

0.
03

]

(-
0.

03
, -

0.
02

]

(-
0.

02
, -

0.
02

]

(-
0.

02
, -

0.
01

]

(-
0.

01
, -

0.
01

]

(-
0.

01
, 0

.0
0

]

(0
.0

0
, 0

.0
1

]

(0
.0

1
, 0

.0
1

]

(0
.0

1
, 0

.0
2

]

(0
.0

2
, 0

.0
2

]

(0
.0

2
, 0

.0
3

]

(0
.0

3
, 0

.0
3

]

(0
.0

3
, 0

.0
4

]

(0
.0

4
, 0

.0
4

]

(0
.0

4
, 0

.0
5

]

(0
.0

5
, 0

.0
5

]

>
0.

05

0

100

200

300

400

500

600

700

800

Figure S3. The statistic histograms of learned SS parameters, taking miniImageNet 1-shot as an example setting.

