
Text2Scene: Generating Compositional Scenes from Textual Descriptions
Supplementary Material

Fuwen Tan1 Song Feng2 Vicente Ordonez1
1University of Virginia, 2IBM Thomas J. Watson Research Center.

fuwen.tan@virginia.edu, sfeng@us.ibm.com, vicente@virginia.edu

1. Network Architecture
Here we describe the network architectures for the com-

ponents of our model in different tasks.

1.1. Text Encoder

We use the same network architecture for the text en-
coders in all our experiments, which consists of a single
layer bidirectional recurrent network with Gated Recurrent
Units (GRUs). It takes a linear embedding of each word
as input and has a hidden dimension of 256 for each direc-
tion. We initialize the word embedding network with the
pre-trained parameters from GloVe [7]. The word embed-
ding vectors are kept fixed for abstract scene and semantic
layout generations but finetuned for synthetic image gener-
ation.

1.2. Scene Encoder

The scene encoder Ω for abstract scene generation is an
Imagenet (ILSVRC) pre-trained ResNet-34 [1]. Its parame-
ters are fixed in all the experiments on Abstract Scene [11].
For layout and synthetic image generations, we develop our
own scene encoders as the inputs for these tasks are not
RGB images.

Table 1 and 2 show the architecture details. Here |V| is
the size of the categorical vocabulary. In the layout gen-
eration task, |V| is 83, including 80 object categories in
COCO [5] and three special categorical tokens: sos, eos,
pad, representing the start and end points for sequence gen-
eration and the padding token. For synthetic image genera-
tion, |V| is 98, including 80 object categories in COCO [5],
15 supercategories for stuffs in COCO-stuff [2] and the spe-
cial categorical tokens: sos, eos, pad.

As described in the main paper, the input for synthetic
image generation has a layer-wise structure where every
three channels contain the color patches of a specific cat-
egory from the background canvas image. In this case, the
categorical information of the color patches can be easily
learned. On the other hand, since the input is a large but
sparse volume with very few non-zero values, to reduce the

Index Input Operation Output Shape
(1) - Input |V| × 64 × 64
(2) (1) Conv(7 × 7, |V| → 128, s2) 128 × 32 × 32
(3) (2) Residual(128→ 128, s1) 128 × 32 × 32
(4) (3) Residual(128→ 256, s2) 256 × 16 × 16
(5) (4) Bilateral upsampling 256 × 28 × 28

Table 1. Architecture of our scene encoder Ω for layout generation.
We follow the notation format used in [3]. Here |V| is the size of
the categorical vocabulary. The input and output of each layer
have a shape of C ×H ×W , where C is the number of channels
and H and W are the height and width. The notation Conv(K
× K, Cin → Cout) represents a convolutional layer with K ×
K kernels, Cin input channels and Cout output channels. The
notation s2 means the convolutional layer has a stride of 2. The
notation Residual(Cin → Cout) is a residual module consisting
of two 3 × 3 convolutions and a skip-connection layer. In the
first residual block (index (3)), the skip-connection is an identity
function and the first convolution has a stride of 1 (s1). In the
second residual block (index (4)), the skip-connection is a 1 × 1
convolution with a stride of 2 (s2) and the first convolution also
has a stride of 2 to downsample the feature map. Here all the
convolutional layers are followed by a ReLU activation.

Index Input Operation Output Shape
(1) - Input 3|V| × 128 × 128
(2) (1) Conv(7 × 7, 3|V| → |V|, s2, g3) |V| × 64 × 64
(3) (2) Residual(|V| → |V|, s1) |V| × 64 × 64
(4) (3) Residual(|V| → 2|V|, s1) 2|V| × 64 × 64
(5) (4) Residual(2|V| → 2|V|, s1) 2|V| × 64 × 64
(6) (5) Residual(2|V| → 3|V|, s2) 3|V| × 32 × 32
(7) (6) Residual(3|V| → 3|V|, s1) 3|V| × 32 × 32
(8) (7) Residual(3|V| → 4|V|, s1) 4|V| × 32 × 32

Table 2. Architecture of our scene encoder Ω for synthetic image
generation. The notations are in the same format of Table 1. The
first convolution (index (2)) is a depthwise separable convolution
where each group of three channels (g3) is convolved to one single
channel in the output feature map. All the convolutional layers are
followed by a LeakyReLU activation with a negative slope of 0.2.

number of parameters and memory usage, we use a depth-
wise separable convolution as the first layer of Ω (index (2)),
where each group of three channels (g3) is convolved to one
single channel in the output feature map.

1.3. Convolutional Recurrent Module

The scene recurrent module for all our experiments is a
convolutional GRU network [12] with one ConvGRU cell.
Each convolutional layer in this module have a 3× 3 kernel
with a stride of 1 and a hidden dimension of 512. We pad the
input of each convolution so that the output feature map has
the same spatial resolution as the input. The hidden state is
initialized by spatially replicating the last hidden state from
the text encoder.

1.4. Object and Attribute Decoders

Table 3 shows the architectures for our object and at-
tribute decoders. Ψo and Ψa are the spatial attention mod-
ules consisting of two convolutional layers. Θo is a two-
layer perceptron predicting the likelihood of the next object
using a softmax function. Θa is a four-layer CNN predict-
ing the likelihoods of the location and attributes of the ob-
ject. As explained in the main paper, the output of Θa has
1 +

∑
k |Rk| channels, where |Rk| denotes the discretized

range of the k-th attribute, or the dimension of the appear-
ance vector Qt used as the query for patch retrieval for
synthetic image generation. The first channel of the output
from Θa predicts the location likelihoods which are normal-
ized over the spatial domain using a softmax function. The
rest channels predict the attributes for every grid location.
During training, the likelihoods from the ground-truth loca-
tions are used to compute the loss. At each step of the test
time, the top-1 location is first sampled from the model. The
attributes are then collected from this sampled location. The
text-based attention modules are defined similarly as in [6].
When denoting di = [hEi ;xi], sot = [uot ; ot−1], and sat = ot,
Φo and Φa are defined as:

c∗t = Φ∗(s∗t , {di}) =
∑
i

exp(score(s∗t , di))∑
j exp(score(s∗t , dj))

· di

score(s∗t , dk) = (s∗t)ᵀW ∗Φdk, ∗ ∈ o, a

Here, W o
Φ and W a

Φ are trainable matrices which learn to
compute the attention scores for collecting the context vec-
tors cot and cat .

These architecture designs are used for all the three gen-
eration tasks. The only difference is the grid resolution (H,
W). For abstract scene and layout generations, (H, W) =
(28, 28). For synthetic image generation, (H, W) = (32, 32).
Note that, although our model uses a fixed grid resolution,
the composition can be performed on canvases of different
sizes.

1.5. Foreground Patch Embedding

The foreground segment representation we use is sim-
ilar with the one in [8], where each segment P is repre-
sented by a tuple (P color, Pmask, P context). Here P color ∈
R3×H×W is a color patch containing the segment, Pmask ∈

Module Index Input Operation Output Shape
Ψo (1) - Conv(3×3, 512→256) 256 × H ×W

(2) (1) Conv(3×3, 256→1) 1 × H ×W
Ψa (1) - Conv(3×3, 1324→256) 256 ×H ×W

(2) (1) Conv(3×3, 256→1) 1 × H ×W
Θo (1) - Linear((1324 + |V|)→512) 512

(2) (1) Linear(512→ |V|) |V|
Θa (1) - Conv(3×3, (1324+|V|)→512) 512 × H ×W

(2) (1) Conv(3×3, 512→256) 256 × H ×W
(3) (2) Conv(3×3, 256→256) 256 × H ×W
(4) (3) Conv(3×3, 256→(1 +

∑
k |R

k|)) (1 +
∑

k |R
k|) × H ×W

Table 3. Architectures for the object and attribute decoders. The
notation Linear(Cin → Cout) represents a fully connected layer
with Cin input channels and Cout output channels. All layers,
except the last layer of each module, are followed by a ReLU ac-
tivation.

Index Input Operation Output Shape
(1) - Input layout (|V| + 4) × 64 × 64
(2) (1) Conv(2 × 2, (|V| + 4)→ 256, s2) 256 × 32 × 32
(3) (2) Conv(2 × 2, 256→ 256, s2) 256 × 16 × 16
(4) (3) Conv(2 × 2, 256→ 256, s2) 256 × 8 × 8
(5) (4) Conv(2 × 2, 256→ 256, s2) 256 × 4 × 4
(6) (5) Conv(2 × 2, 256→ 128, s2) 256 × 2 × 2
(7) (6) Global average pooling 256
(8) - Input patch feature 2048
(9) (7)(8) Linear((256 + 2048)→ 128) 128

Table 4. Architecture of our foreground patch embedding network
for synthetic image generation. All the convolutional layers are
followed by a LeakyReLU activation with a negative slope of 0.2.

{0, 1}1×H×W is a binary mask indicating the foreground
region of P color, P context ∈ {0, 1}|V|×H×W is a semantic
map representing the semantic context around P . The con-
text region of P is obtained by computing the bounding box
of the segment and enlarging it by 50% in each direction.

Table 4 shows the architecture of our foreground patch
embedding network. Here, the concatenation of (P color,
Pmask, P context) is fed into a five-layer convolutional net-
work which reduces the input into a 1D feature vector Fs

(index (7)). As this convolutional backbone is relatively
shallow, Fs is expected to encode the shape, appearance,
and context, but may not capture the fine-grained semantic
attributes of P . In our experiments, we find that incorpo-
rating the knowledge from the pre-trained deep features of
P color can help retrieve segments associated with strong se-
mantics, such as the ”person” segments. Therefore, we also
use the pre-trained features Fd (index (8)) of P color from
the mean pooling layer of ResNet152 [1], which has 2048
features. The final vector Ft is predicted from the concate-
nation of (Fs, Fd) by a linear regression.

1.6. Inpainting Network

Our inpainting network has the same architecture as the
image synthesis module proposed in [8], except that we ex-
clude all the layer-normalization layers. To generate the
simulated canvases on COCO, we follow the procedures
proposed in [8], but make minor modifications: (1) we use

Figure 1. Screen shots of the user interfaces for our human sub-
ject studies on Amazon Mechanical Turk. (A) User interface for
the evaluation study of the abstract scene generation experiment;
(B) User interface for the evaluation study of the synthetic image
generation experiment.

the trained embedding patch features to retrieve alternative
segments to stencil the canvas, instead of the intersection-
over-union based criterion used in [8]. (2) we do not per-
form boundary elision for the segments as it may remove
fine grained details of the segments such as human faces.

2. Optimization
For optimization we use Adam [4] with an initial learn-

ing rate of 5e−5. The learning rate is decayed by 0.8 every
3 epochs. We clip the gradients in the back-propagation
such that the norm of the gradients is not larger than 10.
Models are trained until validation errors stop decreasing.
For abstract scene generation, we set the hyperparameters
(wo, wl, wpose, wexpression, wsize, wdirection, wO

a , wA
a)

to (8,2,2,2,1,1,1,1). For semantic layout generation, we set
the hyperparameters (wo, wl, wsize, waratio, wO

a , wA
a) to

(5,2,2,2,1,0). For synthetic image generation, we set the
hyperparameters (wo, wl, wsize, waratio, wO

a , wA
a , we, α)

to (5,2,2,2,1,0,10,0.5). The hyperparameters are chosen to
make the losses of different components comparable. Ex-
ploration of the best hyperparameters is left for future work.

3. User Study
We conduct two user studies on Amazon Mechanical

Turk (AMT).
The first user study is to evaluate if the generated clip-art

scenes match the input sentences. To this end, we randomly
select 100 groups of images generated from the sentences
in the test set. Each group consists of three images gen-

erated by different models, and the ground truth reference
image. During the study, these images and the correspond-
ing sentences are presented in random orders. The human
annotators are asked to determine if the entailment between
the generated scene and the sentence is true, false or
uncertain. Each group of images is seen by three an-
notators. We ignore the uncertain responses and report
the results using majority opinions. Figure 1 (A) shows the
user interface of this study.

The second user study is on the synthetic image genera-
tion task, where we compare the generated images from our
model and three state-of-the-art approaches: SG2IM [3],
HDGAN [10], and AttnGAN [9]. In each round of the
study, the human annotator is presented with one sentence
and two generated images: one from our model, the other
from an alternative approach. The orders of the images are
randomized. We ask the human annotator to select the im-
age which matches the sentence better. In total, we collect
results for 500 sentences randomly selected from the test
set, using five annotators for each. Figure 1 (B) shows the
user interface of this study.

4. More qualitative examples
4.1. Abstract Scene

We present more qualitative examples on Abstract
Scene [11] in Fig. 2. The examples show that our model
does not simply replicate the ground truth reference scenes,
but generates dramatically different clip-arts which still
match the input textual descriptions.

4.2. Layout Generation

We present more qualitative examples for layout gener-
ation in Fig. 3. The examples include various scenes con-
taining different object categories. Our model manages to
learn important semantic concepts from the language, such
as the presence and count of the objects, and their spatial
relations.

4.3. Synthetic Image Generation

To demonstrate our model does not learn an image-level
retrieval on the training set, we present in Fig. 4 the gen-
erated images and the corresponding source images from
which the patch segments are retrieved for compositing. For
each generated image, we show three source images for
clarity. The examples illustrate that our model learns not
only the presence and spatial layout of objects, but also the
semantic knowledge that helps retrieve segments in similar
contexts. Fig. 5 shows more qualitative examples of our
model for synthetic image generation.

Figure 2. More qualitative examples of the abstract scene generation experiment.

Figure 3. More qualitative examples of the layout generation experiment (best viewed in color). The presences (purple), counts (blue), and
spatial relations (red) of the objects are highlighted in the captions. The last row shows the cases when the layouts are underspecified in
the input captions.

Figure 4. Example synthetic images and the source images from which the patch segments are retrieved for compositing. For each synthetic
image, we show three source images for clarity.

Figure 5. More qualitative examples of the synthetic image generation experiment.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[2] Jasper Uijlings Holger Caesar and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[3] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image gener-
ation from scene graphs. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

[5] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: Common objects in context. European Conference
on Computer Vision (ECCV), 2014.

[6] Minh-Thang Luong, Hieu Pham, and Christopher D. Man-
ning. Effective approaches to attention-based neural machine
translation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1412–1421, 2015.

[7] Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. Glove: Global vectors for word representa-
tion. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014.

[8] Xiaojuan Qi, Qifeng Chen, Jiaya Jia, and Vladlen Koltun.
Semi-parametric image synthesis. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[9] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-
grained text to image generation with attentional generative
adversarial networks. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2018.

[10] Zizhao Zhang, Yuanpu Xie, and Lin Yang. Photographic
text-to-image synthesis with a hierarchically-nested adver-
sarial network. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[11] C. Lawrence Zitnick, Devi Parikh, and Lucy Vanderwende.
Learning the visual interpretation of sentences. In IEEE In-
ternational Conference on Computer Vision (ICCV), 2013.

[12] Z. Zuo, B. Shuai, G. Wang, X. Liu, X. Wang, B. Wang, and
Y. Chen. Convolutional recurrent neural networks: Learning
spatial dependencies for image representation. In IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 18–26, 2015.

