
Supplementary Material: Learning From Noisy Labels By
Regularized Estimation Of Annotator Confusion

A. Data sets, training and architectures

Data sets. In this work, we verified our method on
three classification datasets: MNIST digit classification
dataset [1]; CIFAR-10 object recognition dataset [2];
the cardiac view classification (CVC) dataset from a
handheld ultra-sound probe. The MNIST dataset consists
of 60, 000 training and 10, 000 testing examples, all of
which are 28 × 28 grayscale images of digits from 0 to
9. The CIFAR-10 dataset consists of 50, 000 training
and 10, 000 testing examples, all of which are 32 × 32
coloured natural images drawn from 10 classes. The
CVC data set contains 26, 2000 training and 20, 000 test
examples, which are grayscale images of size 96 × 96
from 6 different cardiac views. Each image is labelled by
a subset of 8 annotators (6 sonographers and 2 non-experts).

Training. For all experiments, we employ the same
training scheme unless otherwise stated. We optimize
parameters using Adam [3] with initial learning rate of
10−3 and β = [0.9, 0.999], with minibatches of size 50
and train for 200 epochs. For our method, we set the scale
of the trace regularization to λ = 0.01. For the training
of the EM-based approaches (Model-Bootstrapped EM
[4] and generalized EM [5]), we train the base classifier
for 200 epochs in total over the course of the EM steps,
following the same protocol above. For CIFAR-10, we
performed two iterations of EM algorithm (T = 2) and 100
epochs worth of gradient descent steps during each E-step
to update the parameters of the base classifier (G = 100
epochs), following the original implementation in [4]. For
the experiments on the CVC data set, we run more rounds
of EM with T = 10 and G = 20 epochs. In all cases, we
hold out 10% of training images as a validation set and best
model is selected based on the validation accuracy over
the course of training. No data augmentation is performed
during training in all three data sets. We note that for
CIFAR-10, we, in addition, decreased the learning rate by
a factor of 10 at every multiple of 50 in a similar fashion to
the schedule used in [6, 7, 8].

Architectures. For MNIST, the base classifier was
defined as a CNN architecture comprised of 4 convolution
layers, each with 3 × 3 kernels follower by Relu. The
number of kerners in respective layers are {32, 32, 64, 64}.
After the first two convolution layers, we perform 2 × 2
max-pooling, and after the last one, we further down-
sample the features with Global Average Pooling (GAP)
prior to the final fully connected layer. For the CVC
dataset, we employed the same architecture, but with
increased number of kernels i.e. {128, 128, 128, 128}. For
CIFAR-10, we used a 50-layer ResNet [7].

B. Confusion matrices of pairwise-flippers and
hammer-spammers

For MNIST experiments, we considered two different
models of annotator types: (i) pairwise-flipper and (ii)
hammer-spammer. Example confusion matrices for both
cases are shown in Fig. 1. For each annotator type and
skill level p, we create a group of 5 annotators by generat-
ing confusion matrices (CMs) from the associated distribu-
tion. More specifically, each CM is generated by perturbing
the mean skill level p by injecting a small Gaussian noise
ε ∼ Normal(0, 0.01) and choosing the flipping target class
randomly in the case of a pairwise-flipper.

(a) Pairwise-flippers with mean skill-level p = 0.3

(b) Spammer-hammers skill-level p = 0.5

Figure 1: Examples of annotator groups. The value of di-
agonal entries are fixed constant for each annotator and is
drawn from Normal(p, 10−2).

C. Additional experiments on MNIST
We present results of experiments on MNIST where

models are trained on noisy labels from groups of 5
“hammer-spammers” for a range of mean skil level p. Fig. 2
shows a comparison of our method against other EM-based
approaches, while Fig. 3 compares our method against other
noise-robust methods without explicit modelling of individ-
ual annotators. Our method consistently achieves compara-
ble or better accuracy with respect to the baselines.

D. Ablation study on trace regularization on
MNIST

We compare our method on MNIST against the case
where the trace norm regularization is removed (results on
CIFAR-10 and CVC datasets are given in the main text).
Fig. 4 shows that adding the trace norm generally improves
the performance in terms of both classification accuracy and
CM estimation error, and such improvement is pronounced
in the presence of larger noise i.e. lower skill levels of an-
notators. We also observe that when the noise level is low,
our model still attains very high accuracy even without trace
norm regularization. This can be explained by the natu-
ral robustness of the CNN classifier; if the amount of label



Figure 2: Comparison between our method, generalized
EM, MBEM trained on noisy labels on MNIST from
“hammer-spammers” for a range of mean skill level p. (a),
(b) show classification accuracy in two cases, one where
all annotators label each example and the other where only
one label is available per example. (c), (d) quantify the CM
recovery error. The shaded areas represent the cases where
the average CM over the annotators are not diagonally dom-
inant.

Figure 3: Classification accuracy on MNIST of different
noise-robust models as a function of the mean annotator
skill level p in two cases. Here, for each mean skill-level
p, a group of 5 “pairwise flippers” is formed and used to
generate labels. (a). each example receives labels from all
the annotators. (b). each example is labelled by only 1 ran-
domly selected annotator.

noise is sufficiently small, the base classifier is still capable
of learning the true label distribution well. This, in turn, al-
lows the model to separate annotation noise from true label
distribution, improving the quality of CM estimation and
thus the overall performance. However, in the presence of
large label noise, having trace-norm regularization shows
evident benefits.

Figure 4: Comparison between our method with and with-
out trace norm on MNIST. Results for two annotator groups,
consisting of “hammer-spammers” and ”pairwise-flippers”
are shown for a range of mean skill level p.

E. Pseudo-codes of our method, generalized
EM and MBEM

Here we provide pseudo-codes of our method (Algo-
rithm 1), generalized EM [5] (Algorithm 2) and model-
bootstrapped EM [4] (Algorithm 3) to clarify the differ-
ences between different methods for jointly learning the
true label distribution and confusion matrices of annota-
tors in eq. 2 in the main text. Given the training set D =

{xn, ỹ
(1)
n , ..., ỹ

(R)
n }Nn=1, each example may not be labelled

by all the annotators. In such cases, for ease of notation,
we assign pseudo class ỹ(r)n = −1 to fill the missing la-
bels. The comparison between these three algorithms illus-
trates the implementational simplicity of our method, de-
spite the comparable or superior performance demonstrated
on all three datasets.



Algorithm 1 Our method

Inputs: D = {xn, ỹ(1)n , ..., ỹ
(R)
n }Nn=1, λ : scale of trace regularizer

Initialize the confusion matrices {Â(r)}Rr=1 to identity matrices
Initialize the parameters of the base classifier θ
Learn θ and {Â(r)}Rr=1 by performing minibatch SGD on the combined loss:

θ, {Â(r)}Rr=1 ←− argminθ,{Â(r)}

[ N∑
i=1

R∑
r=1

1(ỹ
(r)
i 6= −1) · CE(Â(r)p̂θ(xi), ỹ

(r)
i ) + λ

R∑
r=1

tr(Â(r)
)
]

Return: p̂θ and {Â(r)}Rr=1

Algorithm 2 Generalized EM [5]

Inputs: D = {xn, ỹ(1)n , ..., ỹ
(R)
n }Nn=1, T : # EM steps, G : # SGD in each M-step

Initialize posterior distribution by the mean labels: for j = 1, ..., L, n = 1, ..., N

q
(0)
nj := p(yn = j|xn, {ỹ(r)n }r, θ(0))←− R−1

R∑
r=1

1(ỹ
(r)
i = j)

Initialize the parameters of the base classifier θ
Repeat T times:

M-step for θ. Learn the base classifier p̂θ by performing minibatch SGD for G iterations

θ(t+1) ←− argminθ
[
−

N∑
n=1

L∑
l=1

q
(t)
nj · log p(yn = l|xn, θ)

]
M-step for {Â(r)}Rr=1. Estimate the confusion matrices

â
(r),t+1
ji ←−

∑N
n=1 1(ỹ

(r)
i 6= −1) · 1(ỹ(r)n = i) · q(t)nj∑N

n=1 1(ỹ
(r)
i 6= −1) · q(t)nj

E-step. Estimate the posterior label distribution

q
(t+1)
nj ←−

p(yn = j|xn, θ(t+1)) ·
∏R
r=1

(
â
(r),t+1

jỹ
(r)
n

)
1(ỹ

(r)
i 6=−1)

∑L
l=1 p(yn = l|xn, θ(t+1)) ·

∏R
r=1

(
â
(r),t+1

lỹ
(r)
n

)
1(ỹ

(r)
i 6=−1)

Return: p̂θ(T ) and {Â(r),T }Rr=1

Algorithm 3 Model-Bootstrapped EM [4]

Inputs: D = {xn, ỹ(1)n , ..., ỹ
(R)
n }Nn=1, T : # EM steps, G : # SGD in each M-step

Initialize posterior distribution by the mean labels: for j = 1, ..., L, n = 1, ..., N

q
(0)
nj := p(yn = j|xn, {ỹ(r)n }r, θ(0))←− R−1

R∑
r=1

1(ỹ
(r)
i = j)

Initialize the parameters of the base classifier θ
Repeat T times:

M-step for θ. Learn the base classifier p̂θ by performing minibatch SGD for G iterations

θ(t+1) ←− argminθ
[
−

N∑
n=1

L∑
l=1

q
(t)
nj · log p(yn = l|xn, θ)

]
Predict on training examples. for n = 1, ..., N :

cn ←− argmaxl∈{1,...,L} p(yn = l|xn, θ(t+1))

M-step for {Â(r)}Rr=1. Estimate the confusion matrices. For i, j = 1, ..., L and r = 1, ..., R:

â
(r),t+1
ji ←−

∑N
n=1 1(ỹ

(r)
i 6= −1) · 1(ỹ(r)n = i) · 1(cn = j)∑N

n=1 1(ỹ
(r)
i 6= −1) · 1(cn = j)

Update prior label distribution. for l = 1, ..., L:
pl ←− N−1

N∑
n=1

1(cn = l)

E-step. Estimate the posterior label distribution

q
(t+1)
nj ←−

pj ·
∏R
r=1

(
â
(r),t+1

jỹ
(r)
n

)
1(ỹ

(r)
i 6=−1)

∑L
l=1 pl ·

∏R
r=1

(
â
(r),t+1

lỹ
(r)
n

)
1(ỹ

(r)
i 6=−1)

Return: p̂θ(T ) and {Â(r),T }Rr=1
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