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This document provides further analysis for the method
presented in our main paper.

1. Design analysis
In section 4 of our main paper, we demonstrated that any

topology T on a set S can be embedded in a rooted tree in
which each node of the tree represents a non-empty subset
of T or a singleton of S. We proved this hypothesis for
any arbitrary rooted tree. However, the decoder D which
we propose here, is a specific rooted tree structure with the
following features:

– Every node in D has at most one parent
– All nodes at the same level have the same number of

children
– All leaves are at the same level.

While G is not guaranteed to meet the conditions above,
it can be transformed into a new equivalent tree G′ for
which the conditions above are met by performing a series
of node duplication on G outlined below and illustrated in
Fig 1:

– Let x be a node in G with k > 1 parents and
E(pi, x), i ∈ 1 . . . k be the corresponding edges from
parent pi to node x. We duplicate x and it′s associated
subtree and create k equivalent new nodes x1, . . . xk

and edges E(pi, xi), i ∈ 1 . . . k. The result of this du-
plication is new tree G′ where the new nodes xi have
a unique parent pi (Fig. 1a).

– If a leaf x is at level i < L where L is the highest level
of a leaf in G, duplicate x and add the duplicate as a
new child of x. Repeat this procedure until the desired
depth is reached (Fig..1b).

– Let K be the maximum number of children for a node
at level i. For a node x at level i having less than K
children, duplicate one of the children of x to reach
K children and create edges from x to the duplicated
children (Figure 1c, 1d).

Since the operations above are node duplications they do
not delete or add to the information contained in the origi-
nal tree representing topology T. Therefore the new tree G
also embeds topology T. The duplication operations sug-
gest that our learned decoder may generate duplicate point
set embeddings at different nodes. This does not affect the
final point set generated since point sets are invariant to du-
plication of set elements. Still, it would be interesting to
explore methods to reduce potential duplicate nodes in the
learning process. We leave this as an open research ques-
tion.

2. Ablation studies

Design choices involved in our decoder include choosing
the number of features F generated for each node embed-
ding and the number of tree levels L. We analyze the effect
of these parameters for an output cloud size N = 2048 by
varying F in {8, 16, 32, 64}, and L in {2, 4, 6, 8}. This ab-
lations study was used to pick the model’s final number of
layers and number of features. One important thing to note
is that since the number of output points is fixed at 2048
in this experiment, increasing the number of levels requires
decreasing the number of children per level. This opera-
tion is therefore not similar to adding a new layer in con-
ventional networks and a deeper tree may not necessarily
improve performance.

In Figure 2a, we plot the Chamfer distance as a func-
tion of the number of levels L for different values of F. For
F ∈ {8, 32, 64} the graphs exhibit different local minima
but for F = 6, the performance oscillates around an aver-
age value. In Figure 2b, we plot the Chamfer distance as
a function of the number of features F for different values
of L). The graphs for L ∈ {4, 6, 8} exhibit slightly simi-
lar trend though the pattern is non-convex. The graph for
L = 2 exhibits a very different pattern compare to the oth-
ers. In all experiments, regardless of the value for L and F
above, our method outperforms all previous method.
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Figure 1: Illustration of duplication operation that can be performed on any rooted tree to transform it into a full tree

(a) (b)

Figure 2: Ablation Experiments: We analyze the effect of varying different parameters in our network. We vary the number of node
features {8, 16, 32, 64}, and the number of tree levels {2, 4, 6, 8}, while keeping the number of outputs constants. For instance when the
number of levels L=2, the number of children per level is 32-64. When L=4, the number of children per level is 4, 4, 4, 8. All instantiations
of our method outperform previous works. The number of levels seem to suggest a local minimum, but the number of features does not
show a noticeable pattern. The Chamfer distance is reported multiplied by 104.

3. Visualizing learned structure

By design, each node in our decoder embeds and
generates a subset of S made of all its descendant leaves.
We can roughly visualize learned structure by plotting
each node’s descendant leaves. In Figure 3 we show
visualizations of several nodes of the decoder. We notice
that several clustering patterns emerge. Some clusterings
seem geometric (edges of plane and table, center of table),
others semantic (legs of table, front and back of car) while

others appear random but most are consistent across similar
objects. This can be seen as a consequence of our adoption
of the more general definition of topology which does not
enforce the generated clustering to be smooth.

4. Note on previous works comparison

There exists a large number of works on point cloud
generation for 3D shape completion and 3D reconstruction.



We chose a select number of recent works for comparison
based on code availability and replicability. Some works
such as [1] were not included in our comparison due to is-
sues such as dataset unavailability and convergence issues
on our dataset. Due to the lack of consistency in previous
works evaluation (different dataset splits, optimizers, num-
ber of epochs, loss functions, etc.) we will be releasing a
public large scale point cloud completion benchmark based
on the setup and dataset presented in this paper to allow for
consistent comparison across different works.

References
[1] M. Gadelha, R. Wang, and S. Maji. Multiresolution tree net-

works for 3d point cloud processing. In The European Con-
ference on Computer Vision (ECCV), September 2018. 3



Figure 3: Selected point grouping patterns emerging from our structural decoder.


