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1. Detailed MADNet structure

We report here a detailed description of the three mod-
ules that compose MADNet. We start from Fig. 1 depict-
ing details of our pyramidal convolutional feature extractor.
MADNet will deploy two of them with parameter sharing to
extract features independently on the left and right frames
(green and red pyramid in Figure 2 (a) in the main paper).

Then, for each one of the 6 resolutions considered in
MADNet, we build one disparity estimation module as de-
scribed in Fig. 2. Let Dn be a disparity estimation module
for resolution n. The first operation performed is the com-
putation of a cost volume (i.e., correlation layer[4]) between
corresponding convolutional features at the same resolution
extracted from the left and right image (F ln and Frn respec-
tively). If a lower resolution disparity is available (e.g.,
Dn+1), the features from the right image can be partially
aligned to the one on the left before the cost volume com-
putation by using a warping layer [5]. With this strategy we
aim to encode in the cost volume useful information for the
refinement of the lower resolution disparityDn+1. Then the
final input to the module is obtained by concatenating the
cost volume obtained and the up-scaled lower res disparity.
At the lowest resolution in our network (D6) we ignore the
warping and up-sampling steps (since we do not have a D7)
and directly create a cost volume between F l6 and Fr6 . At
the highest resolution considered by our model (D2) we de-
ploy a residual refinement module, depicted in Fig. 3. Here
we use atrous convolutions and residual connections to get
the final disparity estimation at the same resolution as its
input. To recover full resolution, we up-sample the output
of the refinement module using bi-linear interpolation.

2. Implementation and training details for
MADNet and MAD

We resume implementation details regarding how we
have initially trained MADNet on synthetic data, how we
split the network into independent portions and how we
compute the self-supervised loss to train them online.
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Figure 1. Detailed structure of our convolutional feature extractor.
For each convolutional layer, we report the kernel dimensions and
the stride as s followed by the stride step.

Pre-Training: Regarding the initial training of MADNet,
we perform 1200000 training iterations on the FlyingTh-
ings3D dataset using Adam Optimizer and a learning rate
of 0.0001, halved after 400k steps and further every 200k
until convergence. As loss function, we compute the sum
of per-pixel absolute errors between disparity maps esti-
mated at each resolution and downsampled groundtruth la-
bels. The final loss is a weighted sum of the contributions
from the different resolutions. The weights used are respec-
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+Figure 2. Detailed structure of our stereo estimation network at
resolution n. We denote with Fn the convolutional features ex-
tracted at resolution n, superscript l for those obtained from the
left frame and r for those referring to the right one. For the up-
sampling block, we use standard bilinear upsampling while for the
cost volume creation we use the correlation layer introduced in
DispNetC [4] with max displacement 2.

tively 0.005, 0.01, 0.02, 0.08, 0.32 fromD2 toD6 following
[5]. For the additional fine tuning on the KITTI 2012 and
2015 training sets used in section 4.2 of the submitted pa-
per, we performed 500K optimization steps by computing
the loss only on the full-resolution disparity map and using
0.001 as weight. All the other hyperparameters are kept as
in the synthetic training.

Adaptation Concerning MAD, we have grouped layers
(either from the feature extractor or the disparity estima-
tors) according to the resolution at which they operate, i.e.
(Fi,Di) composes a module Mi. We made this decision
because in our architecture layers at the same resolution
are directly connected through skip connections which may
allow approximate backpropagation by flowing the gradi-
ents only through the connection without traversing the
low-resolution layer in between. For example, considering
the structure of the disparity estimation module depicted in
Fig. 2, we would backprop only throughF ln andFrN and not
throughDn+1. By following this strategy, we obtain 5 inde-
pendently trainable portions of MADNet by grouping layers
that produce [Dk,Fk] for each one of the resolutions from
6 to 3. For the higher resolution portions (1-2) we collapsed
together layers working at the half and quarter resolution
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Figure 3. Detailed structure of our residual refinement network.
The network takes as input an initial disparity estimation D∗

n and
the corresponding left convolutional features at the same resolu-
tion F l

n, then uses atrous convolutions to elaborate them (we report
the rate used as r followed by the rate value) and finally outputs a
residual pixel-wise correction.

(i.e., F1, F2, D2 and the refinement module). Each inde-
pendent portion of MADNet can be trained independently
since each one can produce a disparity estimation amenable
for loss computation.

We use as loss function for the adaptation the photomet-
ric consistency between the left RGB frame of the stereo
couple and the right one reprojected according to the pre-
dicted disparity. Following [2], we perform the image re-
projection using a fully differential bilinear sampler, then
compare the two images using a linear combination of
SSIM [6] computed on 3 × 3 patches and L1 distance.
The contribution of the two component are respectively
weighted 0.85 and 0.15. We did not use the left-right con-
sistency check proposed in [2] as it would need to elaborate
each stereo pair twice, drastically reducing the frame rate
of the system without improving the performance consider-
ably. Finally, we run some experiments adding the smooth-
ness term proposed in [2], without getting noticeable im-
provement. Therefore, we decided to omit it to keep our
formulation simpler. For all our tests, every loss function is
computed at full resolution by upsampling the small-scale
predictions using bilinear sampling. All the code used for
our experiments is available 1.

1https://github.com/CVLAB-Unibo/
Real-time-self-adaptive-deep-stereo
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Algorithm 1 Online Adaptation with MAD
1: Require: N = [n1, . . . , np]
2: H = [h1, . . . , hp]← 0
3: while not stop do
4: x← readFrames()
5: [y, y1, . . . , yp]← forward(N , x)
6: Lt ← loss(x, y)
7: θ ← sample(argsoftmax(H))
8: Lθt ← loss(x, yθ)
9: updateWeights(Lθt , nθ)

10: if firstFrame then
11: Lt−2 ← Lt,Lt−1 ← Lt, θt−1 ← θ
12: end if
13: Lexp ← 2 · Lt−1 − Lt−2

14: γ ← Lexp − Lt
15: H ← 0.99 · H
16: H[θt−1]← H[θt−1] + 0.01 · γ
17: θt−1 ← θt,Lt−2 ← Lt−1,Lt−1 ← Lt
18: end while

3. Detailed algorithm for one online adaptation
step using MAD

Alg. 1 provides detailed pseudocode for online adapta-
tion with MAD using our proposed sampling heuristics.

We start by creating a histogram H with p bins, i.e. one
per module, all initialized at 0. For each stereo pair we per-
form a forward pass to get the disparity predictions (line 5)
and measure the performance of the model by computing
the loss Lt according to the full resolution disparity y and,
potentially, the input frames x, e.g., reprojection error be-
tween left and right frames [2] (line 6). Then, we pick the
portion to train θ ∈ [1, . . . , p] by sampling from the proba-
bility distribution obtained as softmax(H) (line 7). Once
selected, we compute one optimization step for layers of
Mθ with respect to the loss Lθt computed on the lower scale
prediction yθ (line 8-9). We have now partially adapted the
network to the current environment. Next, we update H in-
creasing the probability of being sampled for the Mi that
have proven effective. To do so, we can compute a noisy
expected value for Lt by linear interpolation of the losses at
the previous two time step: Lexp = 2 · Lt−1 − Lt−2 (line
13). By comparing it with the measured Lt we can assess
the impact of the network portion sampled at the previous
step (θt−1) as γ = Lexp−Lt, and then increase or decrease
its sampling probability accordingly (i.e., if the adaptation
was effective Lexp > Lt, thus γ > 0). We found out that
adding a temporal decay to H helps increasing the stabil-
ity of the system, so the final update rule for each step is:
H = 0.99 · H,H[στ−1]+ = 0.01 · γ (lines 15 and 16).
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Figure 4. Sampling frequencies for the different independent por-
tions of MADNet using MAD for fast online adaptation.

4. MAD sampling policy

We are interested in investigating which portions of the
network are trained more by MAD according to the reward-
punishment mechanism we designed. To get some insights
we ran MADNet performing adaptation with MAD on the
full KITTI raw dataset 5 times and kept track of the num-
ber of steps on which each portion has been sampled for
training. In Fig. 4 we report on the y-axis the average sam-
pling frequencies for each portion, whereby on the x-axis
we identify each of the portions by the different scale at
which it operates. Surprisingly the most sampled portion
(i.e., the one that according to our heuristic will grant the
greater improvement once adapted) is not the last that pro-
duces the final predictions (i.e., 1

4 ), but the middle portion of
the network (i.e., 1

16 ). As pointed out by [3], a good coarse
disparity map can be easily up-sampled and refined to an
accurate full resolution output. This is further confirmed by
our analysis, showing how MAD favors the fine-tuning of
lower resolution modules(i.e., 1

16 ). This behaviour might
be closely linked to the architecture of MADNet that starts
from a low resolution disparity estimation and iteratively
refine it. If the low resolution disparity has major mistakes
the upper modules are not able to solve them properly, thus
training more the lower resolution modules might be prefer-
able.

5. Qualitative comparison between fast net-
works

Fig. 5 provides additional qualitative comparisons be-
tween the output of three fast stereo architecture: DispNetC
[4], StereoNet [3] and our MADNet. We wish to highlight
how MADNet better maintains thin structures compared to
StereoNet.
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Figure 5. Qualitative comparison between disparity maps from dif-
ferent architectures. From top to bottom, reference image from
KITTI 2015 online benchmark and disparity map by DispNetC
[4], StereoNet [3] and MADNet.

6. Qualitative Results on Online Adaptation

As a further supplementary material, we refer the reader
to a video showing the effectiveness of our online adap-
tation formulation in the two different configurations (Full
and MAD), available at https://www.youtube.com/
watch?v=7SjyzDxmCY4. The colormap used encodes
with bright color points close to the camera (i.e., high dis-
parity) and with dark colors points far from the camera
(i.e., low disparity). We visualize in the upper right corner
the predictions performing only inference at 40FPS, in the
lower left performing fast adaptation using MAD at 25 FPS
and in the lower right performing adaptation of the whole
network using full back-prop at 15 FPS. For better visual-
ization, we have synchronized the output of the three net-
works, so the video is not showing real execution times. To
give a quantitative measurement of the improvement, we
have superimposed over each image in the top left corner
the D1-ALL and EPE metrics. For the two adapting net-
works we also report, between brackets, the gain compared
to the same network without adaptation.

For the first half of the video we have select a video se-
quence from the KITTI raw dataset belonging to the Resi-
dential environment. The video clearly shows how online

adaptation of the whole network by full backprop can solve
most of the mistakes in as few as ∼ 150 frames (i.e., 10s of
execution time at 15FPS). Fast adaptation using MAD, in-
stead, requires slightly more frames to achieve comparable
improvements (i.e., about ∼ 400 frames or 16s at 25FPS),
but then can still benefit from the higher frame rate. Finally,
we can see how going towards the end of the sequence the
gap between the adaptation of the whole network by full
backprop and MAD gets smaller and smaller up to converge
to comparable performance in the final ∼ 500 frames.

The second half of the video concerns performance
achieved in an indoor scenario. For this qualitative eval-
uation we select a sequence from the Wean Hell dataset
[1]. We can see how both adaptation strategies can dras-
tically improve the network that does not perform adapta-
tion. As in the outdoor scenario, the full adaptation requires
less frame to achieve good performance while MAD needs
slightly more frames. By the end of the video, both net-
works produce similar smooth predictions.

Finally, to better highlight some differences between the
two adaptation methods we report on Fig. 6 and Fig. 7 some
selected frames from the videos. On the left most column
we show for each row the index of the frame in the sequence
considered. For each example we show the disparity pre-
dicted by three different configuration of MADNet: without
online adaptation, with online adaptation by full back-prop
and with our computationally efficient MAD.

Fig. 6 shows predictions obtained on a sequence from the
KITTI dataset. With as few as 100 frame Full Adaptation is
able to resolve most of the mistakes in the predicted dispar-
ity, while MAD at the same iteration is only able to slightly
decrease the magnitude of the mistake. Around the 500th

iteration (row 2), MAD start to improve drastically, with the
predicted disparity showing way less mistakes. The same
trends is visible in the following rows with MAD rapidly
closing the performance gap with respect to Full Adapta-
tion. By frame 2000 (i.e., after 2000 step of online adapta-
tion) both adaptation techniques converge to similar predic-
tions

Fig. 7 shows predictions obtained on a sequence from the
indoor Wean Hall dataset [1]. Even in this scenario both the
adaptation mode are able to drastically increase the quality
of the predicted disparity maps with relatively few consid-
ered steps. In particular by the 500th frame the Full Adap-
tation has already adapted the model to the current envi-
ronment as shown by the absence of macro mistakes in the
predicted disparities. MAD, instead, needs more iterations,
but once again can converge to performance comparable to
full adaptation after around 1500 frames (rows 4 and 5 in
Fig. 7). The frames reported in the last two rows show chal-
lenging scenes where the re-projection loss that we use for
adaptation may fail to produce useful gradients due to the
big reflections of the neon lights on the floor that will be
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Figure 6. Comparison between predicted disparities obtained by MADNet with different adaptation modalities. The leftmost side of the
table report the number of elaborated step in the sequence.

viewed differently by the left and right camera. We can see
how all the three models fail to produce good prediction in
this challenging situation, we plan to address this kind of
challenging situation in the future by relying on multiple
unsupervised losses.
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