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S1. A Gradient Analysis of Classification-Aware DANN
Here we provide a detailed derivation of the gradient analysis of DANN and DANN-CA presented in Section 3.2.

S1.1. Gradient for DANN

Let φd :RK→R be a function that generates the exponent of discriminator distribution, i.e.,

D(f) = σ (φd(f)) (S1)

where σ(·) is a logistic (sigmoid) function. Then, we get the following gradient:

∂ log(1−D(f))

∂f
=

−1

1−D(f)
D(f)(1−D(f))

∂φd(f)

∂f
(S2)

= −D(f)
∂φd(f)

∂f
(S3)

= −D(f)wd (S4)

When the discriminator is linear, i.e., φd(f) = w>d f , we end up Eq (S4), which is equivalent to the first one in Eq (7).

S1.2. Gradient for DANN-CA

Let φy :RK→R, y= 1, ...,Y + 1 be a function that generates the exponent of classification distribution of DANN-CA:

C(y) =
exp(φy(f))∑Y+1

y′=1 exp(φy′(f))
(S5)

The gradient of adversarial loss in Eq (5) with respect to f is written as follows:

∂ log(1−C(N+1))

∂f
=

−1

1−C(N+1)

∂C(N+1)

∂f
(S6)

and the second term of RHS is written as

∂C(N+1)

∂f
=
φ′N+1 exp(φN+1)∑Y+1

y′=1 exp(φy′)
−

exp(φN+1)
∑Y+1
y′=1 φ

′
y′ exp(φy′)

{
∑Y+1
y′=1 exp(φy′)}2

(S7)

= φ′N+1C(N+1)− C(N+1)

Y+1∑
y=1

φ′yC(y) (S8)

= φ′N+1C(N+1)(1−C(N+1))− C(N+1)

Y∑
y=1

φ′yC(y) (S9)

1



where φ′y =
∂φy(f)
∂f . Plugging Eq (S9) into Eq (S6) results in the following:

∂ log(1−C(N+1))

∂f
= −φ′N+1C(N+1) + C(N+1)

Y∑
y=1

φ′yC(y|Y) (S10)

= −wN+1C(N+1) + C(N+1)

Y∑
y=1

wyC(y|Y) (S11)

where we assume linear classifier and discriminator, φy(f) = w>y f, y= 1, ..., N+1 to derive Eq (S11) from Eq (S10).

S2. Relation to Maximum Classifier Discrepancy
Here we provide a detailed derivation of relation between our DANN-CA and recently proposed Maximum Classifier

Discrepancy (MCD) learning [22], one of the consistency-based learning frameworks [13, 26, 4], presented in Section 3.2.

S2.1. Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

We briefly review the MCD learning framework for unsupervised domain adaptation. Similarly to the setting of the
DANN, the MCD learning divides the classifier parameterized by deep neural networks into feature extractor (f :X→RK ) and
classifiers built on top of feature extractor. Differently, it contains two (or more) classifiers Fi :RK→(0, 1)Y with no domain
discriminator.

The learning proceeds as follows: First, two classifiers are trained (while fixing the feature extractor) to minimize the
classification loss on the source domain while making maximally different prediction between classifiers on the target domain.
Second, feature extractor is trained (while fixing classifiers) to minimize the classification loss on the source domain while
making consistent prediction between classifiers on the target domain. The learning objective is written as follows:

max
F1,F2

E(x,y)∈XS×Y
[

logF1(f, y) + logF2(f, y)
]

+ Ex∈XT
d (F1(f, ·), F2(f, ·)) (S12)

max
f

E(x,y)∈XS×Y
[

logF1(f, y) + logF2(f, y)
]
− Ex∈XT

d (F1(f, ·), F2(f, ·)) (S13)

The choice of discrepancy metric d could be diverse, and in [22] L1-distance d(p1, p2) = 1
N

∑N
y=1 |p1(y)− p2(y)| is used.

S2.2. Relation between DANN-CA and Maximum Classifier Discrepancy [22].

Now we derive the relation between DANN-CA and MCD learning presented in Section 3.2 with more details. Follow-
ing [22], we define the two classification distributions:

p1(y|xt) =C(y|Y), p2(y|xt) =C(y), y≤N+1 (S14)

Note that two classifiers F1 and F2 are both represented as (N+1)-way classifier parameterization in DANN-CA. Using KL
divergence as discrepancy metric between two distributions, we obtain following discrepancy loss:

−KL(p1‖p2) = −
N+1∑
y

p1(y) log
p1(y)

p2(y)
(S15)

= −
N∑
y

p1(y) log
p1(y)

p2(y)
(S16)

= −
N∑
y

p1(y) log
1

1−C(N+1)
(S17)

= log(1−C(N+1)) (S18)

where Eq (S16) is due to C(N+1|Y) = 0 and Eq (S17) is due to C(y|Y) = C(y)

1−C(N+1)
for all y 6= N . In other words, besides

the specific choice of two classifiers and discrepancy kernels (L1-distance versus KL divergence), two frameworks are indeed
equivalent and thus are expected to have similar empirical performances as well. Empirical comparison of UDA methods
including our proposed DANN-CA, MCD [22], as well as other consistency-based methods [13, 26, 4] is left as a future work.
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S3. Unsupervised Model Selection
Model selection is an important component of unsupervised domain adaptation research since, we seldom have labeled

examples from the target domain for validation due to its nature. Therefore, unsupervised model selection, i.e., model selection
without using labeled examples from the target domain, is an essential component for any UDA method to be useful in practice.
In this section, we introduce a variant of reverse validation [28, 5], the only unsupervised model selection method to our
knowledge, and compare its effectiveness in comparison to our supervised model selection protocol using 5 images per output
classes.

Reverse validation [28, 5] is proposed to validate the performance of domain adaptation methods without using labeled
examples from the target domain. The protocol is given as follows:

• Train domain adaptation model (forward classifier) from source to target;
• Train a “reverse” classifier from unlabeled target examples using pseudo labels predicted by the forward classifier;
• Evaluate the performance of “reverse” classifier on labeled source examples.

The intuition is that if the forward classifier works well on the target examples, then the reverse classifier will also do well on
the source domain, where one can have many labeled examples.

As the procedure introduces a new reverse classifier, the selection of classification method seems important. It is suggested
from [5] to use the same network architecture, possibly initialized from the same network parameters of forward classifier
as reverse classifier. However, we find that this selection is not particularly attractive for the following reasons. Firstly, the
reverse classifier, which is another deep neural network, is expensive and non-trivial to train, e.g., it may require additional
hyperparameter tuning as two domains are not always symmetric. Secondly, deep networks are robust to noise and sometimes
adding label noise improves the generalization performance of deep neural network [27]. These observations suggest limited
correctness of the assumption of reverse validation whereby more accurate forward classifier leads to more accurate reverse
classifier. For example, our experiment with office database shows that accuracies of reverse classifiers1 on labeled source
examples with DANN and DANN-CA as forward classifier on A→W task are 66.21% and 58.57%, respectively, while the
performance of forward classifier on target examples are 72.33% and 77.38%. Note that the performance of reverse classifier
using the ground-truth labels as self-labeled target set is only 46.43%, which verifies the effectiveness of noisy labels in
training deep neural network.

Instead, we propose few alternatives that are much simpler and more efficient to evaluate based on non-parameteric
classifiers. We summarize our proposed unsupervised validation metrics below.

1. k-nearest neighbor: we use k-nearest neighbor classifier using learned representation of forward model f and predicted
labels C(f) (or C(f |Y) for DANN-CA) on target examples by forward model. The performance measure evaluated on
labeled source data is given as follows:

ACCkNN = E(x,y)∈XS×YS 1{y = arg max
ỹ

1

k

∑
x̃∈kNN(x)

C(f(x̃), ỹ)} (S19)

We use k = 5 for all our experiments.

2. mAP: we use an average precision (AP) of labeled source examples with label-predicted target examples via forward
classifier. The performance measure is given as follows:

mAP = E(x,y)∈XS×YSAP (x, y|{xt, arg max
y′

C(f(xt), y
′)}xt∈XT) (S20)

The results with our proposed model selection methods are found in Table S1. We observe that non-parameteric classifiers
defined on learned representation can find models that are consistent with test set performance of the models chosen by
supervised model selection method using 5 images per class. Although we find these unsupervised metrics effective, we also
observe significant performance drop for some models selected by 5-NN or mAP (e.g., M6–M7, M12–M13). We believe that
unsupervised model selection in deep domain adaptation is not yet solved and requires significant more investigation, both
from empirical and theoretical perspectives, which is beyond the scope of our work and will leave them as a future work.

1For simplicity, we train a classifier of the same network configuration to forward classifier with self-labeled target domain examples, but without
adaptation loss.
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ID Persp. Photo. Feature
5/cls (sup.) 5-NN (unsup.) mAP (unsup.)

Top-1 Day Night Top-1 Day Night Top-1 Day Night

M1 Baseline (web only) 54.98 72.67 19.87 – –
M2 Supervised (web + SV) 98.63 98.92 98.05 – –

M3 AF – – 59.73 75.78 27.87 58.88 75.27 26.35 58.89 75.64 25.64
M4 KF – – 61.55 77.98 28.92 60.87 76.70 29.45 60.47 76.56 28.52
M5 MKF – – 64.30 78.62 35.87 61.63 75.53 34.04 64.37 78.67 35.99

M6 – CycleGAN – 64.32 77.01 39.12 60.92 73.55 35.87 61.25 73.95 36.02
M7 – AC-CGAN – 67.30 78.20 45.66 67.44 78.53 45.41 64.52 76.12 41.48
M8 MKF CycleGAN – 71.21 81.54 50.68 69.42 79.59 49.23 70.85 81.95 48.82
M9 MKF AC-CGAN – 79.71 84.10 70.99 74.98 79.70 65.62 78.80 83.18 70.09

M10 – – DANN 60.40 75.56 30.31 58.15 73.97 26.74 60.05 75.52 29.32
M11 – – DANN-CA 75.83 76.73 74.05 75.01 76.53 71.99 75.40 76.51 73.19
M12 MKF – DANN-CA 80.40 82.50 76.22 77.26 82.44 66.98 75.85 82.42 62.82
M13 – AC-CGAN DANN-CA 80.24 82.15 76.44 77.69 82.17 68.78 77.91 82.15 69.50
M14 MKF AC-CGAN DANN-CA 84.20 85.77 81.10 83.78 85.54 80.27 83.82 85.56 80.37

Table S1: Car recognition accuracy on surveillance images of CompCars dataset of our recognition system with different combinations of
components evaluated by supervised and unsupervised model selection methods. We consider pixel-based (AF), keypoint-based (KF) and
with mask (MKF) for perspective transformation, CycleGAN and attribute-conditioned CycleGAN, and DANN, DANN-CA as variations.

S4. Implementation Details
In this section, we describe implementation details of individual components. All components are implemented in Torch [3].

S4.1. Appearance Flow Estimation Networks

AFNet has encoder-decoder structure, which is visualized in Fig. S1. AFNet takes a source image and target viewpoint
as input, where an image of size 256×256 is fed to a convolutional encoder to produce a 2048-dimensional vector and
it is concatenated with 512-dimensional vector generated from the latent code via viewpoint encoder. 2560-dimensional
concatenated vector is fed to decoder, which is constructed with fractionally-strided convolution layers, to generate flow
representation of size 256×256×2. Finally, a source image is warped via appearance flow based on bilinear sampling [9, 29]2

to predict a target image. All convolution layers use 3×3 filters, meanwhile filters of fractionally-strided convolution layers
have size of 4×4. AFNet is trained using Adam optimizer [11] with the learning rate of 0.0003 and batch size of 256.

KFNet architecture is inherited from AFNet and shares the decoder architecture and viewpoint encoder. To accommodate
sparse keypoints as the input, the entire image encoder is replaced by the keypoint encoder, consisting of two fully connected
layers with 256 and 2048 output neurons, respectively. KFNet is trained to optimize Eq (15) with λ = 1. Other hyperparameters
such as the learning rate are the same as those used for AFNet training.

S4.2. Attribute-conditioned CycleGAN

The network architecture for generators and discriminators are illustrated in 5(a). The images of size 256×256 are used
across input or output of generators and discriminators. UNet architecture [8] is used for both generators G and F while we
feed the attribute code a in the middle of the generator network. The 70×70 patchGAN discriminator [8] is used that generates
26×26-dimensional output for real/fake discrimination. The discriminator of conditional GAN [18] is used where D takes
attribute code as an additional input to the real or generated images.3 One can consider a multi-way discriminator [25, 2]
that discriminates not only between real or generated but also between different attribute configurations, but we didn’t find it
effective in our experiment.

We train using Adam optimizer with learning rate of 0.0002 and the batch size of 32 for all networks. In addition, we
adopt two techniques from recent works to stabilize training procedure. For example, we replace the negative log likelihood

2https://github.com/qassemoquab/stnbhwd
3In our experiments, we maintain two sets of parameters for day and night attribute configurations in a similar manner to AC-CycleGAN with unshared

generators in Fig. 5(b).
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Figure S1: AFNet architecture. AFNet receives source image Is and the target perspective θ (e.g., 4-dimensional one hot vector for elevation
from 0◦∼30◦) as input and generates the flow field F to synthesize image Ip through bilinear sampling.

objective of discriminator by a least square loss [17, 30]. Furthermore, we adopt historical buffer strategy [23] that updates the
discriminator not only using generated images with the current generator but also with the generated images from the previous
updates. We maintain an image buffer that stores the 1000 previously generated images for each generator and randomly select
32 images in the buffer to update discriminator.

S4.3. Domain Adversarial Neural Networks

The ImageNet pretrained ResNet-18 [7]4 fine-tuned on the CompCars web dataset is used as our baseline network. The
dimension of the last fully-connected layer is 512. The linear classifier (512−431) is used for all models. For discriminator, we
try both linear (512 - 1) and MLP with different depth (512 - 320×d - 1, d = 1, ..., 4) discriminators. The validation accuracy
is given in Table S2 and we decide to use 3-layer (d = 2) MLP discriminator. Therefore, we employ linear discriminator (512
- 432) for our proposed DANN-CA and DANN-EM, while using MLP discriminator for standard DANN. We augment the
classifier of the baseline network by adding one more column to construct the weight matrices for classifiers of DANN-CA
and DANN-EM. The 432nd column of the weight matrix is initialized by averaging the previous 431 weight vectors, i.e.,
wi,432 = 1

431

∑431
k=1 wi,k, i = 1, ..., 512.

For data preprocessing, we crop and scale web images into 256×256 using provided bounding boxes while maintaining
the aspect ratio. Since they are already cropped, surveillance images are simply scaled into 256×256. We further crop an
image of size 224×224 at random location of an image of size 256×256 with a random horizontal flip to feed to our feature
extractor. All models are trained by updating the classifier/discriminator and CNN parameters in turn. Adam optimizer is
used for training with the learning rate of 0.00001, which is equivalent to the final learning rate of the fine-tuned model on
CompCars web dataset. In addition to λ in Eq (3) and (5) that balances classification loss and domain adversarial loss for
updating parameters of feature extractor, we also tune learning rates of classifier and discriminator separately. Specifically, we
augment Eq (2) and (4) as follows:

max
θd
{LD = EXS log(1−D(f)) + βEXT logD(f)} (S21)

max
θc
{LC = EXS logC(y) + βEXT logC(N+1)} (S22)

We apply regularization coefficient β to loss induced by the target examples. When β = 1, it becomes equivalent to that
of [5].5 In these experiments, we find that β = 1

N is a good starting point for hyperparameter search of DANN-CA, where
N = 431 is the number of classes and we finally fix β = 0.001 for models used in experiments on CompCars dataset. Due to
small β, we increase λ for DANN-CA to backpropagate sufficient amount of gradient from adversarial loss. We also tune β
for DANN from {100, 10, 1, 0.1, 0.01, 0.001}, but we don’t observe significant performance difference. As a result we fix
β = 1 for DANN. The optimal setting of other hyperparameters are reported in Table S3.

4https://github.com/facebook/fb.resnet.torch/tree/master/pretrained
5We set β = 1 for experiments on office database in Section S5.2 following the implementation by [5] to inherit most of the training protocol such as

hyperparameter setting.
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linear MLP with d = 1 MLP with d = 2 MLP with d = 3 MLP with d = 4

Accuracy 58.40±0.59 59.11±0.79 60.01±0.74 59.23±0.66 59.45±0.68

Table S2: Car recognition accuracy on SV validation set of CompCars of DANNs with different discriminator architectures.

DANN DANN-CA

β = 1, λ = 0.01 β = 0.001, λ = 100

Table S3: Optimal hyperparameter settings on CompCars dataset.

S5. Details on Section 5.4: “Evaluation on UDA Benchmark”
We provide more details for the evaluation of DANNs on standard UDA benchmarks. As presented in Section 5.4, we

evaluate on four tasks of digits and traffic sign recognition problems [5] and six tasks of office object recognition problems [21].
The details, such as task description or experimental results, of individual experiments are discussed below.

S5.1. Digits and Traffic Signs

S5.1.1 Task Description.

We start the section by task description and model selection. We note that supervised model selection using a subset of labeled
target examples is used for this experiment inspired by [1].

1. MNIST→MNIST-M: MNIST-M is a variation of MNIST with color-transformed foreground digits over natural images
in the background. Following [6], we augment source data by inverting pixel-values from 0 to 255 and vice versa, thus
doubling the volume of source data. Overall, 120K(= 60K × 2) labeled source images, 50K unlabeled target images
for training, 1, 000 labeled target images for validation, 9, 001 labeled target images for testing are used.

2. Synthetic Digits→SVHN: Synthesized digits [5] are used as labeled training examples to recognize digits in street view
house number dataset (SVHN) [20]. Unlike other works, we use extra unlabeled images of SVHN dataset to train
adaptation models. Overall, 479, 400 labeled source images, 581, 131 unlabeled target images for training, 1, 000 labeled
target images for validation, 26, 032 labeled target images for testing are used.

3. SVHN→MNIST: SVHN is used as a source and MNIST is used as a target. Overall, 73, 257 labeled source images, 50K
unlabeled target images for training, 1, 000 labeled target images for validation, 10K labeled target images for testing are
used.

4. MNIST→SVHN: MNIST is used as a source and SVHN is used as a target. Overall, 50K labeled source images, 73, 257
unlabeled target images for training, 1, 000 labeled target images for validation, 26, 032 labeled target images for testing
are used.

5. Synthetic Signs→GTSRB: In this task we recognize traffic signs from german traffic sign recognition benchmark
(GTSRB) [24] by adapting from labeled synthesized images [19]. In total, 90K labeled source images, 35K unlabeled
target images for training, 430 labeled target images for validation, 12, 569 labeled target images for testing are used.
Unlike aforementioned tasks with 10-way classification using 32× 32 images as input, this task is 43-way classification
and input images are of size 40× 40.

For all tasks, we apply the same data preprocessing of channel-wise mean and standard deviation normalization per example [6],
i.e.,

x̃i,j,c =
(xi,j,c − x̄c)

x̂c
(S23)

where x̄c = 1
w×h

∑w
i=1

∑h
j=1 xi,j,c and x̂c =

√
1

(w×h)−1
∑w
i=1

∑h
j=1(xi,j,c − x̄)2.

We experiment with shallow (2∼3 convolution layers) [5] and deep (6 convolution layers) [6] network architectures as
described in Fig. S2. The shallow network architectures are inspired by [5] and share the same convolution and pooling
architecture, but the classifier and discriminator architectures are slightly different. Similarly, convolution and pooling
architecture of deep network is the same as that of [6] but classifier and discriminator are of our own design.
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Method # val. set network M→MM S→S S→M M→S S→G

RevGrad [5] 0 shallow 76.67 91.09 73.85 – 88.65
DSN [1] 1000/430 shallow 83.2 91.2 82.7 – 93.1
ADA [6] – deep 89.53 91.86 97.6 – 97.66

source only
1000/430 shallow

68.28±0.29 87.22±0.18 68.39±0.79 59.80±0.57 95.63±0.13

DANN 88.62±0.29 88.07±0.16 92.34±0.88 75.48±2.10 97.33±0.10

DANN-CA 90.41±0.20 93.32±0.12 94.15±1.42 82.96±0.90 98.47±0.09

source only
1000/430 deep

67.90±0.95 87.05±0.22 63.74±0.68 62.44±0.52 94.53±0.14

DANN 98.00±0.07 92.24±0.13 88.70±0.33 82.30±1.15 97.38±0.13

DANN-CA 98.03±0.06 94.47±0.06 96.23±0.14 87.48±1.31 98.70±0.06

Table S4: Evaluation on digit and traffic sign adaptation tasks, such as MNIST [14] to MNIST-M [5] (M→MM), Synthetic Digits [5] to
SVHN (S→S), SVHN to MNIST (S→M), MNIST to SVHN (M→S), or Synthetic Signs [19] to GTSRB [24] (S→G). Experiments are
executed for 10 times with different random seeds and mean test set accuracy and standard error are reported. For each network architecture,
the best performers and the ones within standard error are bold-faced. Finally, the best performers across different architectures are colored
in red.
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Figure S2: (a-c) Shallow [5] and (d) deep [6] network architectures for digit and traffic sign adaptation tasks. Three different shallow
architectures are used for different tasks following [5]. ReLU activation is applied followed by convolutional and fully-connected layers
except for the last fully-connected layer connected to classifier or discriminator.

S5.1.2 Results.

The summary results are provided in Table S4. We train 10 models with different random seeds per method and task and report
the mean test set error and standard error. When there is a tie in validation performance between models with different sets of
hyperparameter or at different training epochs, which happens quite frequently since we are using small number of validation
examples, we report the average test set performance of the models. The proposed DANN-CA significantly improves the
performance upon standard DANN on most tasks with both shallow and deep network architectures, achieving state-of-the-art
results on 4 out of 5 tasks.

S5.2. Office Database

S5.2.1 Task Description.

The office database [21] is composed of three datasets, such as Amazon, Webcam, or DSLR, where each dataset contains
images of 31 object categories from different sources. The number of images for each dataset is 2817, 795 and 498, respectively.
Individual dataset is considered as one domain and six adaptation tasks are experimented in total. We note that the office
database is not particularly suitable to demonstrate the effectiveness of our proposed joint pixel and feature-level adaptation
framework since there is no obvious way to inject pixel-level insights, such as 3D shape or lighting variations. In addition, as
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AlexNet

Method Val. A→W D→W W→D A→D D→A W→A Avg

RevGrad [5] RV 73.0 96.4 99.2 – – –
RTN [16] sup-1 73.3 96.8 99.6 71.0 50.5 51.0 73.7
CDAN-RM [15] IWCV 77.9±0.3 96.9±0.2 100±0.0 74.6±0.2 55.1±0.3 57.5±0.4 77.0
CDAN-M [15] IWCV 77.6±0.2 97.2±0.1 100±0.0 73.0±0.1 57.3±0.2 56.1±0.3 76.9

DANN

5-NN 72.10±0.70 96.29±0.06 99.45±0.05 70.97±0.49 51.06±0.41 50.83±0.37 73.45
mAP 72.33±0.61 96.43±0.11 99.76±0.04 70.96±0.42 51.33±0.34 51.23±0.49 73.67
sup-1 72.41±0.70 96.42±0.12 99.54±0.09 70.66±0.74 50.95±0.33 50.74±0.39 73.45
oracle 73.64±0.51 96.86±0.10 99.92±0.04 72.09±0.55 51.98±0.17 51.91±0.32 74.40

DANN-CA

5-NN 77.23±1.37 96.87±0.03 99.56±0.12 74.10±0.93 59.23±0.62 57.89±0.81 77.48
mAP 77.38±1.32 97.11±0.05 99.60±0.06 74.10±0.94 59.53±0.68 57.83±0.85 77.59
sup-1 77.31±1.52 97.00±0.07 99.68±0.13 73.69±1.00 58.79±0.80 57.31±0.89 77.30
oracle 78.09±1.46 97.28±0.03 99.88±0.11 74.58±0.88 59.70±0.68 58.20±0.80 77.95

Table S5: Evaluation on six adaptation tasks of Office benchmark using AlexNet. For each model and task, we report four numbers using
different model selection mechanisms such as (first row) 5-NN classifier or (second row) mAP for reverse validation (RV) on source data,
(third row) one labeled target example per class, or (fourth row) oracle selection via test set accuracy, which serves as an upper bound to
aforementioned validation methods. All experiments are conducted 5 times with different random seeds and the mean accuracy and standard
error are reported.

discussed in [1], the dataset might be limited as there exists considerable amount of high-level variations such as label noise
and the number of examples for training deep adaptation networks is not sufficient.

Nevertheless, the dataset is still useful to demonstrate the effectiveness of our proposed feature-level DA methods, such
as DANN-CA. We follow the training protocol of [5], where ImageNet-pretrained AlexNet [12] is used to initialize the
network parameters while the last fully-connected layer (4096 - 1000) is replaced into shared bottleneck layer (4096 - 256)
followed by classifier (256 - 31) and discriminator (256 - 1024 - 1024 - 1). We also performed the same experiments with
ImageNet-pretrained ResNet-50 [7] following the protocol of [15]. We use relatively shallower network architecture for
classifier and discriminator, where we first replace the last fully-connected layer (2048 - 1000) into shared bottleneck layer
(2048 - 256) followed by classifier (256 - 31) and discriminator (256 - 256 - 1). For DANN-CA, the output of classifier and
discriminator are concatenated to form a unified classifier.

We optimize networks using momentum SGD with “inv” learning rate decay policy of Caffe [10]. We evaluate on the fully
transductive setting [5, 16], where all source and target examples are used for the training of deep networks.

ResNet-50

Method Val. A→W D→W W→D A→D D→A W→A Avg

RevGrad [15] IWCV 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
CDAN-RM [15] IWCV 93.0±0.2 98.4±0.2 100±0.0 89.2±0.3 70.2±0.4 69.4±0.4 86.7
CDAN-M [15] IWCV 93.1±0.1 98.6±0.1 100±0.0 93.4±0.2 71.0±0.3 70.3±0.3 87.7

DANN

5-NN 86.29±0.28 96.95±0.10 98.01±0.12 83.99±0.45 66.58±0.40 67.08±0.12 83.15
mAP 86.42±0.34 96.81±0.28 97.91±0.20 84.10±0.51 67.73±0.61 67.10±0.25 83.35
sup-1 85.97±0.51 96.87±0.19 97.94±0.14 84.12±0.50 67.63±0.73 66.78±0.33 83.22
oracle 86.97±0.24 97.84±0.16 99.00±0.06 85.50±0.38 68.65±0.58 67.67±0.09 84.27

DANN-CA

5-NN 91.47±0.32 98.19±0.05 99.43±0.02 89.32±0.65 69.59±0.21 69.09±0.16 86.18
mAP 91.47±0.32 98.26±0.11 99.52±0.04 89.28±0.61 70.11±0.17 69.34±0.21 86.33
sup-1 91.35±0.36 98.24±0.07 99.48±0.10 89.94±0.41 69.63±0.40 68.76±0.40 86.23
oracle 92.20±0.26 98.47±0.04 99.60±0.00 90.64±0.20 70.64±0.19 69.70±0.22 86.88

Table S6: Evaluation on six adaptation tasks of Office benchmark using ResNet-50. The same experimental protocol is employed to that
using AlexNet. We also transfer the hyperparameters for each task from experiments usign AlexNet except that early stopping is done with
respective model selection metrics.
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ID Persp. Photo. Feature Top-1 Day Night

M7 –
AC-CGAN (shared)

–
67.30 78.20 45.66

AC-CGAN (unshared) 70.03 78.81 52.60

M9 MKF
AC-CGAN (shared)

–
79.71 84.10 70.99

AC-CGAN (unshared) 77.75 82.76 67.79

M14 MKF
AC-CGAN (shared)

DANN-CA
84.20 85.77 81.10

AC-CGAN (unshared) 84.38 85.81 81.56

Table S7: Comparison between AC-CGANs with shared and unshared parameters across generators and discriminators for car model
recognition accuracy on CompCars Surveillance dataset.

S5.2.2 DANN-CA with Reverse Gradient.

To reduce an effort of additional hyperparameter search, we extend our proposed joint parameterization of classifier and
discriminator for unsupervised domain adaptation to reverse gradient [5], a pioneering method of domain adversarial neural
network. The loss formulation is similar to that of standard DANN in Eq (3) with a slight modification as follows:

max
θf
{LF=LC−λLD=LC−λ{EXS log(1−D(f(x))) + EXT logD(f(x))}} (S24)

The losses for classifier and discriminator remain the same as in Eq (1) and (2). The negative sign on the adversarial
loss in Eq (S24) amounts to reversing (and scaling with λ) the gradient before further backpropagating through f . This
allows the entire network including classifier and discriminator as well as feature extractor to be trained end-to-end without
alternating update. Besides the negative sign, we also notice that there is an additional source-to-target confusion term,
−EXS log(1 − D(f(x))), which we find playing an important role in this experiment. Inspired by our analysis, we use
following formulations of DANN and DANN-CA in this experiment:

max
θf
{LF=LC + λ{EXS logD(f(x)) + EXT log(1−D(f(x)))}} (S25)

max
θf
{L̃F=EXS log C̃(y|Y) + λ{EXS log C̃(N+1) + EXT log(1−C̃(N+1))}} (S26)

Note that instead of having −LD we define adversarial losses by flipping source and target labels. As a result, model
components are still trained alternatively between classifiers and feature extractor. Nonetheless, this allows us to transfer
most of the hyperparameters from RevGrad implementation [5]6 including those related to SGD such as learning rate or its
scheduler. We perform few hyperparameter searches for λ starting from 0.1 as suggested by [5].

S5.2.3 Results.

The mean accuracy and standard error of the standard DANN and DANN-CA models trained with 5 different random seeds
are reported in Table S5 and S6 using AlexNet and ResNet-50 as base networks, respectively. The proposed DANN-CA
improves upon the standard DANN by a significant margin. Moreover, the model demonstrates comparable performance to the
state-of-the-art method [15] on both experiments using AlexNet and ResNet-50 as backbone CNNs.

S6. AC-CGAN with Unshared Parameters
As we have small number of attribute configurations for lighting (e.g., day and night), it is affordable to use generator

networks with unshared parameters. This is equivalent to having one generator for each lighting condition while the attribute
code acts as a switch in selecting the respective output to attribute condition for inverse generator or discriminator. The
network architecture is illustrated in Fig. 5(b). Note that this is equivalent to having one generator for each lighting condition
and therefore each CycleGAN can be trained independently if we further assume unshared networks for discriminator and
inverse generator. We conduct experiments on AC-CGAN with unshared parameters for all generators and discriminators and
report the car model recognition accuracy in Table S7. We observe some improvement in recognition accuracy with unshared

6https://github.com/ddtm/caffe/tree/grl
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models; for example, M7 or M14 with unshared parameters achieve higher accuracy than the ones with shared parameters. On
the other hand, M9 with unshared parameters performs a bit lower than the one with shared parameters.

We visualize in Fig. S3 and S4 the photometric transformed images by AC-CGAN in both versions of shared and unshared
parameters. Besides slight performance improvement for AC-CGAN with unshared parameters, we do not observe significant
qualitative difference comparing to AC-CGAN with shared parameters. Eventually, we believe that the model with shared
parameters is more promising for further investigation considering the expansibility of the methods with large number of
attribute configurations as well as other interesting properties such as continuous interpolation between attribute configurations.
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Figure S3: Visualization of synthesized images by photometric transformations using AC-CGANs with shared and unshared parameters.
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Figure S4: Visualization of synthesized images by photometric transformations using AC-CGANs with shared and unshared parameters for
web images with different yaw angles from 0◦.
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a=day a=night 

a 

F 

a G1 

GA 

Da 

(b) Attribute-conditioned CycleGAN with unshared parameters

Figure S5: Networks architecture comparisons between AC-CGANs with shared and unshared parameters across generators and discrimina-
tors.
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