
Supplementary Material: Task-Aware Synthetic Data Generation

A. Implementation Details

Our pipeline is implemented in python using the PyTorch
deep-learning library. In the following subsections, we fur-
nish relevant empirical details for our experiments on the
different datasets in the manuscript.

A.1. Experiments on AffNIST data

In our experiments on the AffNIST benchmark, our
synthesizer network generates affine transformations which
are applied to MNIST images. These transformed images
are then used to augment the MNIST training set and
the performance of a handwritten digit classifier network
trained on the augmented dataset is compared to an equiva-
lent classifier trained on MNIST + AffNIST images. In the
rest of the section, we give details about our experimental
settings.

Data Pre-processing. For the AffNIST benchmark, our
synthesizer network uses foreground masks from the
MNIST training dataset. We pad the original 28 × 28
MNIST images by 6 black pixels on all sides to enlarge
them to a 40 × 40 resolution. This is done to ensure that
images generated by our synthesizer have the same size as
the AffNIST images which also have a spatial resolution of
40× 40 pixels.

Architecture of the Synthesizer Network. The synthe-
sizer network takes as input a foreground image from the
MNIST dataset and outputs a 6−dimensional vector repre-
senting the affine parameters, namely the (i) angle of rota-
tion, (ii) translation along the X−axis, (iii) translation along
the Y−axis, (iv) shear, (v) scale along the X−axis, and (vi)
scale along the Y−axis. We clamp these parameters to the
same range used to generate AffNIST dataset. These pa-
rameters are used to define an affine transformation matrix
which is fed to a Spatial Transformer module [1] alongside
the foreground mask. The Spatial Transformer module ap-
plies the transformation to the foreground mask and returns
the synthesized image. We attach the pytorch model dump
for the synthesizer below.

1 Features (
2 ( BackBone ) : S e q u e n t i a l (
3 ( 0 ) : C2d ( 1 , 10 , k s z =( 5 , 5 ) , s t = (1 , 1 ) )

4 ( 1 ) : MaxPool2d ( k s z =( 3 , 3 ) , s t = (2 , 2 ) )
5 ( 2 ) : BN2d ( 1 0 , eps =1e−05, mmntm = 0 . 1 )
6 ( 3 ) : ReLU ( i n p l a c e )
7 ( 4 ) : Dropout2d ( p = 0 . 5 )
8 )
9 ( FgBranch ) : S e q u e n t i a l (

10 ( 0 ) : C2d ( 1 0 , 20 , k s z =( 3 , 3 ) , s t = (1 , 1 ) )
11 ( 1 ) : ReLU ( i n p l a c e )
12 ( 2 ) : BN2d ( 2 0 , eps =1e−05, mmntm = 0 . 1 )
13 ( 3 ) : Dropout2d ( p = 0 . 5 )
14 ( 4 ) : C2d ( 2 0 , 20 , k s z =( 3 , 3 ) , s t = (1 , 1 ) )
15 ( 5 ) : ReLU ( i n p l a c e )
16 ( 6 ) : BN2d ( 2 0 , eps =1e−05, mmntm = 0 . 1 )
17 ( 7 ) : Dropout2d ( p = 0 . 5 )
18 )
19 )
20 RegressionFC (
21 ( f e a t u r e s ) : S e q u e n t i a l (
22 ( 0 ) : C2d ( 4 0 , 20 , k s z =( 3 , 3 ) , s t = (1 , 1 ) )
23 ( 1 ) : ReLU ( i n p l a c e )
24 ( 2 ) : BN2d ( 2 0 , eps =1e−05, mmntm = 0 . 1 )
25 ( 3 ) : Dropout2d ( p = 0 . 5 )
26 ( 4 ) : C2d ( 2 0 , 20 , k s z =( 3 , 3 ) , s t = (1 , 1 ) )
27 ( 5 ) : ReLU ( i n p l a c e )
28 ( 6 ) : BN2d ( 2 0 , eps =1e−05, mmntm = 0 . 1 )
29 ( 7 ) : Dropout2d ( p = 0 . 5 )
30 )
31 ( r e g r e s s o r ) : S e q u e n t i a l (
32 ( 0 ) : Linear ( i n f =1620 , o u t f =50 , b i a s =True )
33 ( 1 ) : ReLU ( i n p l a c e )
34 ( 2 ) : BatchNorm1d ( 5 0 , eps =1e−05, mmntm = 0 . 1 )
35 ( 3 ) : Dropout ( p = 0 . 5 )
36 ( 4 ) : Linear ( i n f =50 , o u t f =20 , b i a s =True )
37 ( 5 ) : ReLU ( i n p l a c e )
38 ( 6 ) : BatchNorm1d ( 2 0 , eps =1e−05, mmntm = 0 . 1 )
39 ( 7 ) : Dropout ( p = 0 . 5 )
40 ( 8 ) : Linear ( i n f =20 , o u t f =6 , b i a s =True )
41 )
42 )

The acronyms used in the pytorch model dump are de-
scribed in Table. 1.
Architecture of the Target Classifier. For our experiments
in Figure. 7, we use a target model with two convolutional
layers followed by a dropout layer, and two linear layers.
The pytorch model dump is attached below.

1 MNISTClass i f ier (
2 ( 0 ) : C2d ( 1 , 10 , k s z =( 5 , 5 ) , s t =( 1 , 1 ) )
3 ( 1 ) : ReLU ( i n p l a c e )
4 ( 2 ) : C2d ( 1 0 , 20 , k s z =( 5 , 5 ) , s t = (1 , 1 ) )
5 ( 3 ) : ReLU ( i n p l a c e )
6 ( 4 ) : Dropout2d ( p = 0 . 5 )
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Acronym Meaning
C2d Conv2d

BN2d BatchNorm2d
ksz kernel size

st stride
pdng padding

LReLU LeakyReLU
neg slp negative slope

InstNrm2D InstanceNorm2d
mmntm momentum

in f in features
out f out features

Table 1: Acronyms used within PyTorch model dumps.

7 ( 5 ) : Linear ( i n f =980 , o u t f =50 , b i a s =True )
8 ( 6 ) : ReLU ( i n p l a c e )
9 ( 7 ) : Linear ( i n f =50 , o u t f =10 , b i a s =True )

10 )

For our experiments in Table. 1, we use the following
architecture from [6], where Swish denotes the swish acti-
vation function from [3].

1 MNISTClassif ierDeep (
2 ( 0 ) : C2d ( 1 , 64 , k s z =( 5 , 5 ) , s t =( 2 , 2 ) )
3 ( 1 ) : BN2d ( 6 4 , eps =1e−05, mmntm = 0 . 1 )
4 ( 2 ) : Swish ( i n p l a c e )
5 ( 3 ) : C2d ( 6 4 , 64 , k s z =( 5 , 5 ) , s t = (2 , 2 ) )
6 ( 4 ) : BN2d ( 6 4 , eps =1e−05, mmntm = 0 . 1 )
7 ( 5 ) : Swish ( i n p l a c e )
8 ( 6 ) : C2d ( 6 4 , 64 , k s z =( 5 , 5 ) , s t = (2 , 2 ) )
9 ( 7 ) : BN2d ( 6 4 , eps =1e−05, mmntm = 0 . 1 )

10 ( 8 ) : Swish ( i n p l a c e )
11 ( 9 ) : C2d ( 6 4 , 64 , k s z =( 5 , 5 ) , s t = (2 , 2 ) )
12 ( 1 0 ) : BN2d ( 6 4 , eps =1e−05, mmntm = 0 . 1 )
13 ( 1 1 ) : Swish ( i n p l a c e )
14 ( 1 2 ) : Linear ( i n f =576 , o u t f =50 , b i a s =True )
15 ( 1 3 ) : Swish ( i n p l a c e )
16 ( 1 4 ) : Linear ( i n f =50 , o u t f =10 , b i a s =True )
17 )

Training the Synthesizer Network. We use the ADAM
optimizer with a batch-size of 1024 and a fixed learning
rate of 10−3. Xavier initialization is used with a gain of
0.4 to initialize the network weights. The synthesizer is
trained in lock-step with the target model: we alternately
update the synthesizer and target models. The weights of
the target model are fixed during the synthesizer training.
The synthesizer is trained until we find 500 hard examples
per class. A synthesized image is said to be a hard example
if p− p∗ > 0.05 where p∗ is the probability of it belonging
to the ground truth class, and p is the maximum probability
over the other classes estimated by the target model.
We maintain a cache of hard examples seen during the
synthesizer training and use this cache for training dataset
augmentation. We observed from our experiments that
the number of epochs required to generated 500 images

per class increases over sleep cycles as the target model
became stronger.

Training the Target Network. The original training
dataset consists of MNIST training images. After each
phase of synthesizer network training we augment the train-
ing dataset with all images from the cache of hard examples
and train the target network for 30 epochs. The augmented
dataset is used to fine-tune the classifier network. For fine-
tuning, we use SGD optimizer with a batch-size of 64, 10−2

learning rate and a momentum of 0.5. For our experiments
in Table. 1, we reduce the learning rate to 10−3 after 100
iterations of training the synthesizer and target networks.

A.2. Experiments on Pascal VOC data

In our experiments on the Pascal VOC person detection
benchmark, we additionally employ a natural versus
synthetic image discriminator to encourage the synthetic
images to appear realistic. We use the SSD−300 pipeline
from [2] as the target model.

Data Pre-processing. We resize all synthetic images to
300×300 pixels to be consistent with the SSD−300 training
protocol. Background images for generating synthetic data
are drawn from the COCO dataset, and foreground masks
come from the VOC 2007 and 2012 trainval datasets. VOC
datasets contain instance segmentation masks for a subset
of trainval images. We use the ground truth segmentation
masks and bounding box annotations to recover additional
instance segmentation masks. We noticed that for about
10% images the segmentation and bounding box detections
do not agree, therefore we visually inspected the instance
masks generated and filtered out erroneous ones. Figure 1
shows some images from the VOC dataset where the seg-
mentation and bounding box annotations disagree, resulting
in erroneous instance masks.

The foreground segmentations are centered and nor-
malized such that max(height, width) of the segmentation
bounding-box occupies at least 0.7 of the corresponding
image dimension. We randomly pair background images
with foreground instances while training the synthesizer
network and during synthetic data generation.

Architecture of the Synthesizer Network. The synthe-
sizer architecture is similar to the one used for AffNIST
experiments with two enhancements: (i) we use the fully
convolutional part of the the VGG−16 [4] network as the
backbone, and (ii) we have an additional mid-level feature
extraction subnetwork for the background image. This is
described in the following model dump.

1 Features (
2 ( BackBone ) : S e q u e n t i a l (
3 ( 0 ) : C2d ( 3 , 64 , k s z =( 3 , 3 ) , pdng = (1 , 1 ) )
4 ( 1 ) : BN2d ( 6 4 , eps =1e−05, mmntm = 0 . 1 )



Figure 1: Disagreements between segmentation and de-
tection annotations in the VOC dataset. Column 1 shows
ground truth bounding boxes overlaid on images. Column
2 shows segmentation annotations. Column 3 shows gen-
erated instance masks: each green box corresponds to one
instance.

5 ( 2 ) : ReLU ( i n p l a c e )
6 ( 3 ) : C2d ( 6 4 , 64 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
7 ( 4 ) : BN2d ( 6 4 , eps =1e−05, mmntm = 0 . 1 )
8 ( 5 ) : ReLU ( i n p l a c e )
9 ( 6 ) : MaxPool2d ( k s z =2 , s t =2)

10 ( 7 ) : C2d ( 6 4 , 128 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
11 ( 8 ) : BN2d ( 1 2 8 , eps =1e−05, mmntm = 0 . 1 )
12 ( 9 ) : ReLU ( i n p l a c e )
13 ( 1 0 ) : C2d ( 1 2 8 , 128 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
14 ( 1 1 ) : BN2d ( 1 2 8 , eps =1e−05, mmntm = 0 . 1 )
15 ( 1 2 ) : ReLU ( i n p l a c e )
16 ( 1 3 ) : MaxPool2d ( k s z =2 , s t =2)
17 ( 1 4 ) : C2d ( 1 2 8 , 256 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
18 ( 1 5 ) : BN2d ( 2 5 6 , eps =1e−05, mmntm = 0 . 1 )
19 ( 1 6 ) : ReLU ( i n p l a c e )
20 ( 1 7 ) : C2d ( 2 5 6 , 256 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
21 ( 1 8 ) : BN2d ( 2 5 6 , eps =1e−05, mmntm = 0 . 1 )
22 ( 1 9 ) : ReLU ( i n p l a c e )
23 ( 2 0 ) : C2d ( 2 5 6 , 256 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
24 ( 2 1 ) : BN2d ( 2 5 6 , eps =1e−05, mmntm = 0 . 1 )
25 ( 2 2 ) : ReLU ( i n p l a c e )
26 ( 2 3 ) : MaxPool2d ( k s z =2 , s t =2)
27 ( 2 4 ) : C2d ( 2 5 6 , 512 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
28 ( 2 5 ) : BN2d ( 5 1 2 , eps =1e−05, mmntm = 0 . 1 )
29 ( 2 6 ) : ReLU ( i n p l a c e )
30 ( 2 7 ) : C2d ( 5 1 2 , 512 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
31 ( 2 8 ) : BN2d ( 5 1 2 , eps =1e−05, mmntm = 0 . 1 )
32 ( 2 9 ) : ReLU ( i n p l a c e )
33 ( 3 0 ) : C2d ( 5 1 2 , 512 , k s z = (3 , 3 ) , pdng =( 1 , 1 ) )
34 ( 3 1 ) : BN2d ( 5 1 2 , eps =1e−05, mmntm = 0 . 1 )
35 ( 3 2 ) : ReLU ( i n p l a c e )
36 ( 3 3 ) : MaxPool2d ( k s z =2 , s t =2)
37 )
38 ( FgBranch ) : S e q u e n t i a l (
39 ( 0 ) : C2d ( 5 1 2 , 256 , k s z = (3 , 3 ) , s t =( 1 , 1 ) )

40 ( 1 ) : BN2d ( 2 5 6 , eps =1e−05, mmntm = 0 . 1 )
41 ( 2 ) : ReLU ( i n p l a c e )
42 ( 3 ) : C2d ( 2 5 6 , 256 , k s z = (3 , 3 ) , s t = (1 , 1 ) )
43 ( 4 ) : BN2d ( 2 5 6 , eps =1e−05, mmntm = 0 . 1 )
44 ( 5 ) : ReLU ( i n p l a c e )
45 ( 6 ) : C2d ( 2 5 6 , 20 , k s z = (3 , 3 ) , s t = (1 , 1 ) )
46 )
47 ( BgBranch ) : S e q u e n t i a l (
48 ( 0 ) : C2d ( 5 1 2 , 256 , k s z = (3 , 3 ) , s t = (1 , 1 ) )
49 ( 1 ) : BN2d ( 2 5 6 , eps =1e−05, mmntm = 0 . 1 )
50 ( 2 ) : ReLU ( i n p l a c e )
51 ( 3 ) : C2d ( 2 5 6 , 256 , k s z = (3 , 3 ) , s t = (1 , 1 ) )
52 ( 4 ) : BN2d ( 2 5 6 , eps =1e−05, mmntm = 0 . 1 )
53 ( 5 ) : ReLU ( i n p l a c e )
54 ( 6 ) : C2d ( 2 5 6 , 20 , k s z = (3 , 3 ) , s t = (1 , 1 ) )
55 )
56 )
57 RegressionFC (
58 ( f e a t u r e s ) : S e q u e n t i a l (
59 ( 0 ) : C2d ( 4 0 , 64 , k s z =( 5 , 5 ) , pdng =( 2 , 2 ) )
60 ( 1 ) : ReLU ( i n p l a c e )
61 ( 2 ) : BN2d ( 6 4 , eps =1e−05, mmntm = 0 . 1 )
62 ( 3 ) : C2d ( 6 4 , 64 , k s z =( 5 , 5 ) , pdng =( 2 , 2 ) )
63 ( 4 ) : ReLU ( i n p l a c e )
64 ( 5 ) : BN2d ( 6 4 , eps =1e−05, mmntm = 0 . 1 )
65 )
66 ( r e g r e s s o r ) : S e q u e n t i a l (
67 ( 0 ) : Linear ( i n f =64 , o u t f =128 , b i a s =True )
68 ( 1 ) : ReLU ( i n p l a c e )
69 ( 2 ) : BatchNorm1d ( 1 2 8 , eps =1e−05, mmntm = 0 . 1 )
70 ( 3 ) : Linear ( i n f =128 , o u t f =128 , b i a s =True )
71 ( 4 ) : ReLU ( i n p l a c e )
72 ( 5 ) : BatchNorm1d ( 1 2 8 , eps =1e−05, mmntm = 0 . 1 )
73 ( 6 ) : Linear ( i n f =128 , o u t f =6 , b i a s =True )
74 )
75 )

Architecture of the Discriminator. Our discriminator is
based on the discriminator architecture from [5].

1 D i s c r i m i n a t o r (
2 ( 0 ) : S e q u e n t i a l (
3 ( 0 ) : C2d ( 3 , 64 , k s z =( 4 , 4 ) , s t = (2 , 2 ) , pdng

=( 2 , 2 ) )
4 ( 1 ) : LReLU( n e g s l p = 0 . 2 , i n p l a c e )
5 )
6 ( 1 ) : S e q u e n t i a l (
7 ( 0 ) : C2d ( 6 4 , 128 , k s z = (4 , 4 ) , s t = (2 , 2 ) , pdng

=( 2 , 2 ) )
8 ( 1 ) : InstNrm2D ( 1 2 8 , eps =1e−05, mmntm = 0 . 1 ,

a f f i n e = F a l s e , t r a c k r u n n i n g s t a t s = F a l s e )
9 ( 2 ) : LReLU( n e g s l p = 0 . 2 , i n p l a c e )

10 )
11 ( 2 ) : S e q u e n t i a l (
12 ( 0 ) : C2d ( 1 2 8 , 256 , k s z = (4 , 4 ) , s t = (2 , 2 ) ,

pdng =( 2 , 2 ) )
13 ( 1 ) : InstNrm2D ( 2 5 6 , eps =1e−05, mmntm = 0 . 1 ,

a f f i n e = F a l s e , t r a c k r u n n i n g s t a t s = F a l s e )
14 ( 2 ) : LReLU( n e g s l p = 0 . 2 , i n p l a c e )
15 )
16 ( 3 ) : S e q u e n t i a l (
17 ( 0 ) : C2d ( 2 5 6 , 512 , k s z = (4 , 4 ) , s t = (1 , 1 ) ,

pdng =( 2 , 2 ) )
18 ( 1 ) : InstNrm2D ( 5 1 2 , eps =1e−05, mmntm = 0 . 1 ,

a f f i n e = F a l s e , t r a c k r u n n i n g s t a t s = F a l s e )
19 ( 2 ) : LReLU( n e g s l p = 0 . 2 , i n p l a c e )
20 )
21 ( 4 ) : S e q u e n t i a l (



22 ( 0 ) : C2d ( 5 1 2 , 1 , k s z =( 4 , 4 ) , s t = (1 , 1 ) , pdng
=( 2 , 2 ) )

23 )
24 ( 5 ) : AvgPool2d ( k s z =3 , s t =2 , pdng = [1 , 1 ] )
25 )

Training the Synthesizer, Discriminator and Target Net-
works. The synthesizer is trained in lock-step with the dis-
criminator and the target models: the discriminator and tar-
get model weights are fixed and the synthesizer is trained
for 1000 batches. The synthesizer is then used to gener-
ate synthetic images: we do a forward pass on 100 batches
of randomly paired foreground and background images and
pick composite images which have a target estimated prob-
ability of less than 0.5. These hard examples are added to
the training dataset. The weights of the synthesizer network
are then fixed and the discriminator and target models are
trained for 3 epochs over the training set. This cycle is re-
peated 5 times.

The VGG-16 backbone of the synthesizer is initialized
with an ImageNet pretrained model. The synthesizer is
trained using the ADAM optimizer with a batch-size of 16
and a fixed learning rate of 1e − 4 is used. The weights
of the discriminator are randomly initialized to a Normal
distribution with a variance of 0.02. The discriminator is
trained using the ADAM optimizer with a batch size of 16
and a fixed learning rate of 1e − 4 is used. We initialize
the SSD model with the final weights from [2]. The SSD
model is trained using the SGD optimizer, a fixed learning
rate of 1e − 5, momentum of 0.9 and a weight decay of
0.0005.

Custom Spatial Transformer. The image resizing during
data pre-processing step and the spatial-transformer module
both involve bilinear interpolation which introduces quanti-
zation artefacts near the segmentations mask edges. To deal
with these artefacts we customize the Spatial Transformer
implementation. More specifically, we remove these arte-
facts by subtracting a scalar(µ = 1 − 10−7) from the seg-
mentation masks and applying ReLU non-linearity. The re-
sult is normalized back to a binary image. Gaussian blur
is applied to the resulting mask for smooth transition near
edges before applying alpha blending.

A.3. Experiments on GMU Kitchen data

Our experiments on the GMU data use the same synthe-
sizer architecture and training strategy as described in Sec-
tion. A.2 with one change: we do not use the discriminator
in these experiments. We did not see noticeable improve-
ments in performance with the addition of the discriminator
in these experiments.

B. Qualitative Results
Qualitative results follow on the next page.



Figure 2: Qualitative results for Synthetic Data Generation. Row-1: Here we show the synthetic images generated by our
synthesizer based on feedback from the baseline SSD trained on the VOC 2007-2012 dataset. These images evoke misclas-
sifications from the baseline SSD primarily because they present human instances in unforeseen/unrealistic circumstances.
Row-2: SSD failures on VOC 2007 test images after finetuning the baseline SSD with composite images such as those shown
in Row-1. We notice the the three failure cases are a) person instances at small scales, b) horizontal pose, and c) severe oc-
clusion. Row-3: Synthetic images generated by our synthesizer after feedback from the finetuned SSD. We notice that our
synthesizer now generates small scales, horizontal pose and severely truncated instances.



baseline ours
Figure 3: Qualitative improvements on the GMU Kitchen benchmark. Green and red bounding boxes denote correct and
missing detections respectively.



baseline ours
Figure 4: More qualitative improvements on the GMU Kitchen benchmark. Green and red bounding boxes denote correct
and missing detections respectively.



Figure 5: Qualitative improvements on the Pascal VOC person detection benchmark. Green and red bounding boxes denote
correct and missing detections respectively.



Figure 6: More qualitative improvements on the Pascal VOC person detection benchmark. Green and red bounding boxes
denote correct and missing detections respectively.
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