Supplementary for Video Relationship Reasoning using
Gated Spatio-Temporal Energy Graph

1. Towards Leveraging Language Priors

The work of [5] has emphasized the role of language
priors in alleviating the challenge of learning relationship
models from limited training data. Motivated by their work,
we also study the role of incorporating language priors in
our framework.

In Table. 1 in the main text, comparing UEG to UEGT,
we have seen that language priors aid in improving the re-
lationship reasoning performance. Considering our exam-
ple in Sec. 3.1 in main text, when the training instance
is {mother, pay, money}, we may also want to infer that
{father, pay, money} is a more likely relationship as op-
posed to {cat, pay, money} (as mother and father are se-
mantically similar compared to mother and cat). Likewise,
we can also infer {mother, pay, check} from the semantic
similarity between money and check.

[5] adopted a triplet loss for pairing word embeddings
of object, predicate, and subject. However, their method
required sampling of all the possible relationships and was
also restricted to the number of entities spatially (e.g, K =
3). Here, we present another way to make the parameterized
pairwise energy also be gated by the prior knowledge in
semantic space. We let the prior from semantic space be
encoded as word embedding: S = {S*}X_ in which S* €
RIV |xd denoting prior of labels with length d. We extend
Eq. (3) in the main text as
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where ug(-) € R and vg(-) € R maps the label prior to a
score. Eq. (1) suggests that the label transition from Y}* to
Y;’f/ can also attend to the affinity inferred from prior knowl-
edge.

We performed a preliminary evaluation on the relation
recognition task in the ImageNet Video dataset using 300-
dim Glove features [6] as word embeddings. For subject,
predicate, object, and relation triplet, Acc@1 metric im-
proves from 90.60, 28.78, 89.79, and 25.01 to 90.97, 29.54,
90.57, and 26.48.

2. Connection to Self Attention and Non-Local
Means

In our main text, the message form (eq. (5)) with our
observation-gated parametrization (eq. (3) with ¢ = t) can
be expressed as follows:
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The equation can be reformulated in matrix form:

—logmy js ¢ 1 = Query - Key | - Value,
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We now link this message form with self attention in Ma-
chine Translation [10] and Non-Local Mean in Computer
Vision [1]. Self-Attention is expressed as the form of

softmax (Query - KeyT> - Value

with Query, Key, and Value depending on input (termed
observation in our case).

In both Self Attention and our message form, the at-
tended weights for Value is dependent on observation. The
difference is that we do not have a row-wise softmax activa-
tion to make the attended weights sum to 1. The derivation
is also similar to Non-Local Means [1]. Note that Machine
Translation [10] focuses on the updates for features across
temporal regions, Non-Local Mean [1] focuses on the up-
dates for the features across spatial regions, while ours fo-
cuses on the updates for the entities prediction (i.e., as a
message passing).
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Graph Convolutional Network [40] Relationship Detection Relationship Tagging Relationship Recognition
Method relationship relationship A B C relationship
R@50 R@100 mAP P@l P@s P@10 Acc@1 Acc@1 Acc@1 Acc@1
l Standard Evaluation for ImageNet Video dataset: A = subject, B = predicate, C = object
Structural RNN [3] 6.89 8.62 6.89 46.50 33.30 26.94 88.73 2747 88.52 23.80
Graph Convolution [11] 6.02 7.53 8.21 38.50 30.20 2270 86.29 2422 85.77 19.18
GSTEG (Ours) 7.05 8.67 9.52 51.50 39.50 28.23 90.60 28.78 89.79 25.01
l Zero-Shot Evaluation for ImageNet Video dataset: A = subject, B = predicate, C = object
Structural RNN [3] 0.12 0.19 0.10 1.36 1.92 1.85 70.60 6.71 67.59 2.78
Graph Convolution [11] 0.16 0.16 0.20 1.37 1.92 1.51 75.00 5.32 7245 3.94
GSTEG (Ours) 1.16 2.08 0.15 2.74 1.92 1.92 82.18 7.87 79.40 6.02
l Standard Evaluation for Charades dataset: A = object, B = verb, C = scene
Structural RNN [3] 23.63 31.15 8.73 17.18 12.24 9.18 42.73 64.32 34.40 12.40
Graph Convolution [11] 23.53 31.10 8.56 16.96 12.23 9.43 42.19 64.82 36.11 12.75
GSTEG (Ours) 24.95 33.37 9.86 19.16 12.93 9.55 43.53 64.82 40.11 14.73

Gated Spatio-Temporal Energy Graph (ours)

Graph Convolutional Network [40] Structural-RNN [Jain et al., CVPR’16]

Fully-Connected / Probabilistic / Length of the Graph Yes / Yes / Entire Video

Yes / No / Partial Video (~32 frames) No / No / Entire Video

X(A): set of nodes that contribute to A All Nodes in Entire Video

All Nodes in Partial Video Partial Past Nodes in Entire Video (no Future Nodes)

mgp_,4: message from node B to node A
X, € R% feature of node 4, y, € RIV4l: its corresponding label

matrix: label compatibility matrix
mpn =[(FC KDOF Gy

mp_a = RNNi([Xa, X))

scalar: similarity between X, and Xp
M-s =|(FC(Xa)"FC; (Xp))|X5

¥4: label for node A
FC: fully-connected layer, RNN.: recurrent layer,

Y4 = softmax (FCS(XA) + Z "lB-»A)

BER(A)

[++]: concatenation

e ya = softmax (RNNZ ([mBﬁA,"',mBWA)hA,XA]))

Ya = softmax (FC3 (mA—»A + Z mEﬁA))

Figure 1. [Bottom] Table summarizing the novelty of our proposed approach v.s. competing methods, [Top-left] Comparison of the
graphical structures, [Top-right] Empirical comparisons between our approach and other Structural RNN [3] and Graph Convolution [11].

Our model performs well across all the three tasks.

3. Comparisons with SRNN [3] & GCN [11]

Here, we provide comparisons with Structural-RNN
(SRNN) [3] and Graph Convolutional Network (GCN) [1 1]
for comparisons. We note that these approaches are de-
signed for video activity recognition, which cannot be di-
rectly applied in video visual relationship detection. In
Fig. 1 (top-left), we show how we minimally modifying
SRNN and GCN for evaluating them in video relation-
ship detection. The main differences are: 1) our model
constructs a fully-connected graph for entire video, while
SRNN has a non-fully connected graph and GCN considers
only building a graph on partial video (~32 frames), and
2) the message passing across node represents prediction’s
dependency for our model, while it indicates temporally
evolving edge features for SRNN and similarity-reweighted
features for GCN.

4. Activity Recognition in Charades

Sigurdsson et al. [9] proposed Asynchronous Tempo-
ral Fields (AsyncTF) for recognizing 157 video activities.
As discussed in Related Work (see Sec. 2), video activ-
ity recognition is a downstream task of visual relationship
learning: in Charades, each activity (in 157 activities) is
a combination of one category object and one category in
verb. We now cast how our model be transformed into video
activity recognition. First, we change the output sequence
tobe Y = {V;}L |, where Y; is the prediction of video ac-
tivity. Then, we apply our Gated Spatio-Temporal Energy
Graph on top of the sequence of activity predictions. In this
design, we achieve the mAP of 33.3%. AsyncTF reported

the mAP 18.3% for using only RGB values from a video.

5. Feature Representation in Pre-Reasoning
Modules

ImageNet Video. We now provide the details for repre-
senting X7, which is the predicate feature in t;, chunk
of the input instance. Note that we use the relation fea-
ture from prior work [8] (the feature can be downloaded
form [7]) as our predicate feature. The feature comprises
three components: (1) improved dense trajectory (iDT) fea-
tures from subject trajectory, (2) improved dense trajectory
(iDT) features from object trajectory, and (3) relative fea-
tures describing the relative positions, size, and motion be-
tween subject and object trajectories. iDT features are able
to capture the movement and also the low-level visual char-
acteristics for an object moving in a short clip. The relative
features are able to represent the relative spatio-temporal
differences between subject trajectory and object trajectory.
Next, the features are post-processed as bag-of-words fea-
tures after applying a dictionary learning on the original fea-
tures. Last, three sub-features are concatenated together for
representing our predicate feature.

Charades. We use the output feature layer from 13D net-
work [2] to represent our object (X7), verb (X}’), and scene
feature (X;). The I3D network is pre-trained from Kinetics
dataset [2] (the model can be downloaded from [12]) and
the output feature layer is the layer before output logits.



6. Intractable Inference during Evaluation

In ImageNet Video dataset, during evaluation, for rela-
tion detection and tagging, we have to enumerate all the
possible associations of subject or object tracklets. The
number of possible associations grows exponentially by the
factor of the number of chunks in a video, which will easily
become computationally intractable. Note that the problem
exists only during evaluation since the ground truth asso-
ciations (for subject and object tracklets) are given during
training. To overcome the issue, we apply the greedy asso-
ciation algorithm described in [&] for efficiently associating
subject or object tracklets. The idea is as follows. First,
we adopt the inference only in a chunk. Since the message
does not pass across chunks, at this step, we don’t need to
consider associations (for subject or object tracklets) across
chunks. In a chunk, for a pair of subject and object tracklet,
we have a predicted relation triplet. Then, from two over-
lapping chunks, we only associate the pair of the subject
and object tracklets with the same predicted relation triplet
and high tracklets vloU (i.e., > 0.5). Comparing to the
original inference, this algorithm exponentially accelerates
the time computational complexity. On the other hand, in
Charades, we do not need associate object tracklets. Thus,
the intractable computation complexity issue does not exist.
The greedy associate algorithm is not required for Charades.

7. Training and Parametrization Details

We specify the training and parametrization details as
follows.
ImageNet Video. Throughout all the experiments, we
choose Adam [4] with learning rate 0.001 as our optimizer,
32 as our batch size, 30 as the number of training epoch,
and 3 as the number of message passing. We initialize the
marginals to be the marginals estimated from unary energy.

e Rank number r: 5

o gh¥(XF): |XF| x (]YF| x r) fully-connected layer,
resize to |Y,*| x r

o hEF(XF): |XE|x x (]| x r) fully-connected layer,
resize to [YF'| x r

o rEF (XF): |XF| x 1024 fully-connected layer, ReLU
Activation, Dropout with rate 0.3, 1024 x 1024 fully-
connected layer, ReLU Activation, Dropout with rate
0.3, 1024 x (|Y;¥| x r) fully-connected layer, resize to
Y] xr

o sEF(XF): |XF| x 1024 fully-connected layer, ReLU
Activation, Dropout with rate 0.3, 1024 x 1024 fully-
connected layer, ReLU Activation, Dropout with rate
0.3, 1024 x (|Y;¥'| x ) fully-connected layer, resize to
YF | xr

e 0:10
o whiF (XF): | XF| x |Y}¥| fully-connected layer

Charades: Throughout all the experiments, we choose
SGD with learning rate 0.005 as our optimizer, 40 as our
batch size, 5 as the number of training epoch, and 5 as the
number of message passing. We initialize the marginals to
be the marginals estimated from unary energy.

e Rank number r: 5

o ghF (XF): |XF| x (Y| x r) fully-connected layer,
resize to |Y,*| x r

o hEF(XF): |)I(Lf“| x (|Y¥'| x r) fully-connected layer,
resize to |Y,F | x r

o rEF(XF): |XF| x (|Y}¥| x r) fully-connected layer,
resize to |Y*| x r

o sEF(XF): |),(tk| x x(|Y}'| x r) fully-connected layer,
resize to |Y,F | x r

e 0: 300

wh* (XF): | XF| x [Y}| fully-connected layer

8. Parametrization in Leveraging Language
Priors

Additional networks in the experiments towards leverag-
ing language priors are parametrized as follows:

e d: 300 (because we use 300-dim. Glove [6] features)

o up(-): d x 1024 fully-connected layer, ReLU Acti-
vation, Dropout with rate 0.3, 1024 x 1024 fully-
connected layer, ReLU Activation, Dropout with rate
0.3, 1024 x 1 fully-connected layer

e vy(-): d x 1024 fully-connected layer, ReLU Acti-
vation, Dropout with rate 0.3, 1024 x 1024 fully-
connected layer, ReLU Activation, Dropout with rate
0.3, 1024 x 1 fully-connected layer

9. Category Set in Dataset

For clarity, we use bullet points for referring to the cate-
gory choice in datasets for the different entity.

o subject | object in ImageNet Video (total 35 categories)

— airplane, antelope, ball, bear, bicycle, bird, bus,
car, cat, cattle, dog, elephant, fox, frisbee, giant
panda, hamster, horse, lion, lizard, monkey, mo-
torcycle, person, rabbit, red panda, sheep, skate-
board, snake, sofa, squirrel, tiger, train, turtle,
watercraft, whale, zebra



e predicate in ImageNet Video (total 132 categories)

— taller, swim behind, walk away, fly behind, creep
behind, lie with, move left, stand next to, touch,
follow, move away, lie next to, walk with, move
next to, creep above, stand above, fall off, run
with, swim front, walk next to, kick, stand left,
creep right, sit above, watch, swim with, fly
away, creep beneath, front, run past, jump right,
fly toward, stop beneath, stand inside, creep left,
run next to, beneath, stop left, right, jump front,
jump beneath, past, jump toward, sit front, sit
inside, walk beneath, run away, stop right, run
above, walk right, away, move right, fly right,
behind, sit right, above, run front, run toward,
jump past, stand with, sit left, jump above, move
with, swim beneath, stand behind, larger, walk
past, stop front, run right, creep away, move to-
ward, feed, run left, lie beneath, fly front, walk
behind, stand beneath, fly above, bite, fly next to,
stop next to, fight, walk above, jump behind, fly
with, sit beneath, sit next to, jump next to, run
behind, move behind, swim right, swim next to,
hold, move past, pull, stand front, walk left, lie
above, ride, next to, move beneath, lie behind,
toward, jump left, stop above, creep toward, lie
left, fly left, stop with, walk toward, stand right,
chase, creep next to, fly past, move front, run
beneath, creep front, creep past, play, lie inside,
stop behind, move above, sit behind, faster, lie
right, walk front, drive, swim left, jump away,
jump with, lie front, left

e verb in Charades (total 33 categories)

— awaken, close, cook, dress, drink, eat, fix, grasp,
hold, laugh, lie, make, open, photograph, play,
pour, put, run, sit, smile, sneeze, snuggle, stand,
take, talk, throw, tidy, turn, undress, walk, wash,
watch, work

e object in Charades (total 38 categories)

— None, bag, bed, blanket, book, box, broom, chair,
closet/cabinet, clothes, cup/glass/bottle, dish,
door, doorknob, doorway, floor, food, groceries,
hair, hands, laptop, light, medicine, mirror, pa-
per/notebook, phone/camera, picture, pillow, re-
frigerator, sandwich, shelf, shoe, sofa/couch, ta-
ble, television, towel, vacuum, window

e scene in Charades (total 16 categories)

— Basement, Bathroom, Bedroom, Closet / Walk-
in closet / Spear closet, Dining room, Entry-
way, Garage, Hallway, Home Office / Study,

Kitchen, Laundry room, Living room, Other,
Pantry, Recreation room / Man cave, Stairs
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