
Appendix of
On the Structural Sensitivity of Deep Convolutional Networks

to the Directions of Fourier Basis Functions

A. Notations

Notations are summarized in table 1.

B. Preliminary

B.1. Circulant matrix

Let c be a vector and ci be the i-th element of the vector c. A circulant matrix is a matrix with the following shape.

Circ(c:) =


c0 c1 . . . cn−2 cn−1
cn−1 c0 c1 cn−2

... cn−1 c0
. . .

...

c2
. . . . . . c1

c1 c2 . . . cn−1 c0

. (1)

A doubly block circulant matrix is a block matrix whose blocks are circulant. The matrix A below is an example of a doubly
block circulant matrix.

A =


Circ(K0,:) Circ(K1,:) . . . Circ(Kn−2,:) Circ(Kn−1,:)

Circ(Kn−1,:) Circ(K0,:) Circ(K1,:) Circ(Kn−2,:)
... Circ(Kn−1,:) Circ(K0,:)

. . .
...

Circ(K2,:)
. . . . . . Circ(K1,:)

Circ(K1,:) Circ(K2,:) . . . Circ(Kn−1,:) Circ(K0,:)

, (2)

where Ki,: is a i-th row of a matrix K. When the channel size of a convolutional layer is equal to one and padding is “wraps
around,” convolution operation can be written as a doubly block circulant matrix [1, 12].

C. Proof of propositions

C.1. Proposition 1

We prove the proposition following Sedghi et al. [12]. Our assumption is that the padding is “wrap around”. Under the
assumption, a convolutional can be represented by the following matrix M .

M =


B(0,0) B(0,1) . . . B(0,min−1)

B(1,0) B(1,1) . . . B(1,min−1)

...
...

. . .
...

B(mout−1,0) B(mout−1,1) . . . B(mout−1,min−1)

, (3)



Table 1. Notation table.
Circ(c): A Circulant matrix crated by a vector c.
xi: An i-th element of a vector x.
Ai,j : An i-th row j-th column element of a matrix A.
Ai,j : An i-th row j-th column element of a matrix A.
ωN : n-th root of 1, exp(2π

√
−1/N).

ωi
N : n-th root of 1 power i.
FN : A matrix which (FN )i,j = ω

(i+j)
N .

S(X): 2d Fourier transformation of a matrix X .
QN : A matrix FN ⊗ FN .
⊗: A Kronecker product.
Im: m-dimensional identity matrix.
R: Im ⊗QN .
m: Channel size.

where each B(c,d) is a doubly circulant matrix. Let D(c,d) = QH
NB

(c,d)QN . Since Bc,d is a doubly circulant matrix, D(c,d) is
a diagonal matrix. Now we can write,

(Iout ⊗QN )
H
M (Iin ⊗QN ) =


D(0,0) D(0,1) . . . D(0,min−1)

D(1,0) D(1,1) . . . D(1,min−1)

...
...

. . .
...

D(mout−1,0) D(mout−1,1) . . . D(mout−1,min−1)

. (4)

By multiplying (Imout
⊗QN ) from left and (Imin

⊗QN )
H from right, we have

M = (Imout
⊗QN )L (Imin

⊗QN )
H
, (5)

where

L =


D(0,0) D(0,1) . . . D(0,min−1)

D(1,0) D(1,1) . . . D(1,min−1)

...
...

. . .
...

D(mout−1,0) D(mout−1,1) . . . D(mout−1,min−1)

. (6)

C.2. Proposition 2

We prove the proposition partially following Sedghi et al. [12]. Using prop. 1, M (i) can be decomposed as follows.

M (i) =
(
Imi+1 ⊗QN

)
L(i) (Imi ⊗QN )

H
, (7)

where L(i) is a block matrix such that each block is diagonal. Since

(Im ⊗QN )
H
(Im ⊗QN ) = ImN2 , (8)

we can write M as

M =
(
Imd+1

⊗QN

)( d∏
i=1

L(i)

)
(Im1

⊗QN )
H
, (9)

where d is the number of layers. Let

L =

d∏
i=1

L(i) (10)

=


D(0,0) D(0,1) . . . D(0,min−1)

D(1,0) D(1,1) . . . D(1,min−1)

...
...

. . .
...

D(mout−1,0) D(mout−1,1) . . . D(mout−1,min−1)

. (11)



Since all L(i) are block matrix such that all blocks are diagonal. For any w ∈ {1, . . . , N2}, let G(w) be a matrix such that

G
(w)
i,j = D(i,j)

w,w . (12)

Let σ be a singular value of G(w) with a left singular vector x and a right singular vector y. We claim that y ⊗ (QN ):,w is a
right singular vector of M . Let ew be a standard basis vector. Since D(i,j) is diagonal,

L(y ⊗ ew) = σ(x⊗ ew). (13)

Thus,

M (y ⊗ (QN ):,w) = (Imd+1
⊗QN )L(y ⊗ ew) (14)

= σ(Imd+1
⊗QN )(x⊗ ew) (15)

= σ(x⊗ ew). (16)

Let σ̃ be another singular value of G(w) with a left singular vector x̃ and a right singular vector ỹ. Then,

(x⊗ ((QN ):,w))
H(x̃⊗ ((QN ):,w)) = (x⊗ ((QN ):,w))

H(Imout
⊗QN )(Imout

⊗QN )H(x̃⊗ ((QN ):,w)) (17)

= (x⊗ ew)H(x̃⊗ ew) (18)

= xHx̃ (19)
= 0. (20)

Similarly,

(y ⊗ ((QN ):,w))
H(ỹ ⊗ ((QN ):,w)) = 0. (21)

Also,

(x⊗ ((QN ):,w))
H(x⊗ ((QN ):,w)) = 1, (22)

(y ⊗ ((QN ):,w))
H(y ⊗ ((QN ):,w)) = 1. (23)

Let σ̃ be another singular value of G(w̃) with a left singular vector x̃ and a right singular vector ỹ, where w 6= w̃. Then,

(x⊗ ((QN ):,w))
H(x̃⊗ ((QN ):,w̃)) = (x⊗ ((QN ):,w))

H(Imout ⊗QN )(Imout ⊗QN )H(x̃⊗ ((QN ):,w̃)) (24)

= (x⊗ ew)H(x̃⊗ ew̃) (25)
= 0. (26)

The last line holds because there are no overwrap in non-zero elements in the two vectors. Similarly,

(y ⊗ ((QN ):,w))
H(ỹ ⊗ ((QN ):,w̃)) = 0. (27)

Thus, using the Kronecker product of singular vectors of G(w) and (QN ):,w for all w, we may form a singular value
decomposition of M .

C.3. Proposition 3

Let M be a matrix that represents the convolutional layer. When we have a skip connection, the convolution plus the skip
connection can be represented as

M + I. (28)

Since M is a doubly block circulant matrix, M + I is also a doubly block circulant matrix. Thus, we can apply Prop. 2 with
the number of layer d = 1.



C.4. Proposition 4

Normalization layers such as batch-normalization layer at test time or weight-normalization layer can be represented by a
multiplication of a diagonal matrix whose elements corresponding to the same channels are equal. Thus, convolutional layers
followed by such normalization layers can be represented by Eq.(3). Thus, we can apply Prop. 2.

C.5. Proposition 5

First, we consider a sampling operation to a tensor G such that we sample elements of inputs whose x, y coordinates are in
{i, j|i = 0 (mod s) and j = 0 (mod s)}. For simplicity, we consider a convolution with intput output channel sizes are one.
We start from analysis of the output of the operation when its input is (FN ):,a ⊗ (FN )b,:. Since i, j-th element of the output is
((FN ):,a ⊗ (FN )b,:)i×s,j×s and

((FN ):,a ⊗ (FN )b,:)i×s,j×s =
(
(FN/s):,(a%(N/s)) ⊗ (FN/s)(b%(N/s)),:

)
i,j
, (29)

the output is (FN/s):,(a%(N/s)) ⊗ (FN/s)(b%(N/s)),:. Thus, when we decompose the input x as

x =

N∑
a=0

N∑
b=0

λ(a,b)(FN ):,a ⊗ (FN )b,:, (30)

and decompose the output y as

y =

N/s∑
a=0

N/s∑
b=0

λ̃(a,b)(FN ):,a ⊗ (FN )b,:, (31)

the following equation holds.

λ̃(a,b) =

s∑
l=0

s∑
r=0

λ(a+lN/s,b+rN/s). (32)

Thus, the sampling operation can be written as

QN/sSQ
H
N , (33)

where

S =
[
I(N/s)2 I(N/s)2 . . . I(N/s)2

]
. (34)

The same holds when the input output channel size is m ≥ 1, and we can write the operation as

(Im ⊗QN/s)S
′(Im ⊗QN )H, (35)

where S′ is a block diagonal matrix such that

S′ =


S O . . . O
O S . . . O
...

...
. . .

...
O O . . . S

. (36)

Let M be a matrix that represents a convolutional layer with stride 1. Since a convolutional layer with stride s can be



represented by a multiplication of M followed by the sampling operation, the convolutional layer can be represented by

(Imout ⊗QN/s)S
′(Imin ⊗QN )HM (37)

=(Imout
⊗QN/s)S

′L(Imin
⊗QN )H (38)

=(Imout ⊗QN/s)


S O . . . O
O S . . . O
...

...
. . .

...
O O . . . S

 (39)


D(0,0) D(0,1) . . . D(0,min−1)

D(1,0) D(1,1) . . . D(1,min−1)

...
...

. . .
...

D(mout−1,0) D(mout−1,1) . . . D(mout−1,min−1)

(Imin
⊗QN )H (40)

=(Imout
⊗QN/s)


S̃(0,0) S̃(0,1) . . . S̃(0,mins−1)

S̃(1,0) S̃(1,1) . . . S̃(1,mins−1)

...
...

. . .
...

S̃(mout−1,0) S̃(mout−1,1) . . . S̃(mout−1,mins−1)

(Imin
⊗QN )H, (41)

where S̃(c,d) is a diagonal matrix. For later use, we define a matrix L as

L =


S̃(0,0) S̃(0,1) . . . S̃(0,mins−1)

S̃(1,0) S̃(1,1) . . . S̃(1,mins−1)

...
...

. . .
...

S̃(mout−1,0) S̃(mout−1,1) . . . S̃(mout−1,mins−1)

. (42)

For any w ∈ {1, . . . , (N/s)2}, let G(w) be a matrix such that

G
(w)
i,j = S̃(i,j)

w,w . (43)

Let σ be a singular value of G(w) with a left singular vector x and a right singular vector y. Let us consider the following
unique decomposition:

y =

s2∑
i=1

y(i) ⊗ ẽi, (44)

where ẽi is a s-dimensional standard basis vector. We claim that

s∑
i=1

y(i) ⊗ (QN ):,w+is. (45)

is a right singular vector of M .
Let ew be a (N/s)2-dimensional standard basis vector. Since S̃(i,j) is diagonal,

L(y ⊗ ew) = σ(x⊗ ew). (46)

Thus,

M

(
s∑

i=1

y(i) ⊗ (QN ):,w+is

)
= (Imd+1

⊗QN/s)L(y ⊗ ew) (47)

= σ(Imd+1
⊗QN/s)(x⊗ ew) (48)

= σ(x⊗ (QN/s):,w). (49)



Let σ̃ be another singular value of G(w) with a left singular vector x̃ and a right singular vector ỹ. Then,(
s∑

i=1

y(i) ⊗ (QN ):,w+is

)H( s∑
i=1

ỹ(i) ⊗ (QN ):,w+is

)
(50)

=

(
s∑

i=1

y(i) ⊗ (QN ):,w+is

)H

(Im ⊗QN )(Im ⊗QN )H

(
s∑

i=1

ỹ(i) ⊗ (QN ):,w+is

)
(51)

=

(
s∑

i=1

y(i) ⊗ ẽi ⊗ ew

)H( s∑
i=1

ỹ(i) ⊗ ẽi ⊗ ew

)
(52)

=(y ⊗ ew)H(ỹ ⊗ ew) (53)

=yHỹ (54)
=0. (55)

Similarly, (
x⊗ (QN/s):,w

)H (
x̃⊗ (QN/s):,w

)
= 0 (56)

Also, (
x⊗ (QN/s):,w

)H (
x⊗ (QN/s):,w

)
= 1, (57)(

s∑
i=1

y(i) ⊗ (QN ):,w+is

)H( s∑
i=1

y(i) ⊗ (QN ):,w+is

)
= 1. (58)

Let σ̃ be another singular value of G(w̃) with a left singular vector x̃ and a right singular vector ỹ, where w 6= w̃. Then,(
s∑

i=1

y(i) ⊗ (QN ):,w+is

)H( s∑
i=1

ỹ(i) ⊗ (QN ):,w̃+is

)
(59)

=

(
s∑

i=1

y(i) ⊗ (QN ):,w+is

)H

(Imout
⊗QN )(Imout

⊗QN )H

(
s∑

i=1

ỹ(i) ⊗ (QN ):,w̃+is

)
(60)

=(y ⊗ ew)H(ỹ ⊗ ew̃) (61)
=0. (62)

The last line holds because there are no overwrap in non-zero elements in the two vectors. Similarly,(
x⊗ (QN/w):,w

)H (
x̃⊗ (QN/s):,w̃

)
= 0. (63)

Thus, using x⊗ (QN/w):,w and (44) for all w and singular values, we may form a singular value decomposition of M .

C.6. Proposition 6

Assume x is a vector such that S(x)u,v = S(x)∗N−u,N−v . Let y = S(x). Then,

xu,v = S−1(y)u,v (64)

=
1

N

N−1∑
m=0

N−1∑
n=0

ym,n exp(2π
√
−1(um+ vn)/N) (65)

=
1

N

∑
(m,n)∈{0,...,N−1}×{0,...,N−1}

ym,n exp(2π
√
−1(um+ vn)/N). (66)



When N is odd,

1

N

∑
(m,n)∈{0,...,N−1}×{0,...,N−1}

ym,n exp(2π
√
−1(um+ vn)/N) (67)

=y0,0 +
1

N

∑
(m,n)∈{0,...,N−1}×{0,...,N−1}\{(0,0)}

1

2

(
(68)

ym,n exp(2π
√
−1(um+ vn)/N) + yN−m,N−n exp(2π

√
−1(u(N −m) + v(N − n))/N)

)
(69)

=y0,0 +
1

N

∑
(m,n)∈{0,...,N−1}×{0,...,N−1}\{(0,0)}

(Re(ym,n) cos(2π(um+ vn)/N)− Im(ym,n) sin(2π(um+ vn)/N)) .

(70)

Since y0,0 = y0,0∗, which means y0,0 is real, xu,v is real. When N is even,

1

N

∑
(m,n)∈{0,...,N−1}×{0,...,N−1}

ym,n exp(2π
√
−1(um+ vn)/N) (71)

=y0,0 + yN/2,N/2 +
1

N

∑
(m,n)∈{0,...,N−1}×{0,...,N−1}\{(0,0),(N/2,N/2)}

1

2

(
(72)

ym,n exp(2π
√
−1(um+ vn)/N) + yN−m,N−n exp(2π

√
−1(u(N −m) + v(N − n))/N)

)
(73)

=y0,0 + yN/2,N/2 +
1

N

∑
(m,n)∈{0,...,N−1}×{0,...,N−1}\{(0,0)}

(
(74)

Re(ym,n) cos(2π(um+ vn)/N)− Im(ym,n) sin(2π(um+ vn)/N)
)
. (75)

Since y0,0 = y0,0∗ and yN/2,N/2 = yN−N/2,N−N/2∗ = yN/2,N/2∗, xu,v is real. Thus, when S(x)u,v = S(x)∗N−u,N−v for
all u and v, x is real.

Assume x is a real vector. Then,

S(x)∗N−u,N−v =
1

N

N−1∑
m=0

N−1∑
n=0

ym,n exp(2π
√
−1((N − u)m+ (N − v)n)/N)∗ (76)

=
1

N

N−1∑
m=0

N−1∑
n=0

ym,n exp(−2π
√
−1((N − u)m+ (N − v)n)/N) (77)

=
1

N

N−1∑
m=0

N−1∑
n=0

ym,n exp(2π
√
−1(um+ vn)/N) (78)

= S(x)u,v. (79)

D. Evaluation setups
Datasets: We used MNIST [8], fashion-MNIST [15], SVHN [10], CIFAR10, CIFAR100 [5], and ILSVRC2015 [11] as
datasets. For CIFAR10 and CIFAR100, as an data augmentation, we padded four pixels on each side and randomly sampled a
32× 32 crop from the padded image or its horizontal flip. 4 pixels are padded on each side We then normalized them with the
mean and std of each channel. For training on ILSVRC2015, we augmented data following He et al. [3]. For training on
ILSVRC2015, we rescaled images with its shorter side randomly sampled in [256, 480] and randomly cropped into 224× 244
for scale augmentation [13]. We used per-channel subtraction and standard color augmentation [6]. For other datasets, we
scaled inputs into the range from zero to one.

Architectures: We used a multi-layer perceptron (MLP) consisting of 1000–1000 hidden layer with ReLU activation,
LeNet [7], WideResNet [16], DenseNet-BC [4], and VGG [13] with batch-normalization for evaluations on datasets except
for ILSVRC2015. For ILSVRC2015, we used ResNet50 [3], DenseNet, VGG16, and GoogLeNet [14]. For VGG16 and
GoogLeNet, we added a batch-normalization layer after each convolution for faster training.



Training details except for ILSVRC2015: We used Nesterov momentum as an optimizer with momentum 0.9, weight
decay 0.0005, and batchsize 128 for the experiments. We trained the MLP and LeNet for 50 epochs with an initial learning rate
0.1 decayed by 0.1 at every 10 epochs. We trained WideResNet as follows. For MNIST, fashion-MNIST, and SVHN, we used
width factor k = 4, layer 16, and dropout ratio 0.4, and trained for 160 epochs with initial learning ratio 0.01 decayed by 0.1
at epoch 80 and 120. For CIFAR10 and CIFAR100, we used width factor k = 10, layer 28, and dropout ratio 0.3, and trained
for 200 epochs with initial learning ratio 0.1 decayed by 0.1 at epoch 60, 120, and 160. These are the same configuration for
SVHN and CIFAR in Zagoruyko and Komodakis [16]. We trained DenseNet-BC with layer 100, growth rate 12, and dropout
ratio 0.2.

Training details on ILSVRC2015: We used SGD with momentum 0.9, weight decay 0.0001, and batchsize 256, and
trained for 90 epochs for all architectures. For ResNet50, GoogLeNet, and VGG16, we used the same learning rate scheduling
and momentum correction used by Goyal et al. [2]. For DenseNet121, we set an initial learning rate to 0.1 and multiplied by
0.1 at epoch 30 and 60, following Huang et al. [4].

Metric: We used the fool ratio as a metric, which is the percentage of data that models changed its prediction, following
Moosavi-Dezfooli et al. [9].
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