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The supplemental material contains the following details
that we could not include in the main paper due to space
restrictions:
• Sec. 1: Details of the proposed scene model, the corre-

sponding dependencies among attributes, the annotation
process and the statistics of our newly collected annota-
tions.

• Sec. 2: A detailed description of our graphical model for
predicting coherent and temporally smooth scene repre-
sentations.

• Sec. 3: Exact definitions of the neural network architec-
tures used in the paper.

• Sec. 4: An ablation study of various hyper-parameters of
the proposed model and several baselines.

• Sec. 5: Discussion about the domain gap between syn-
thetic data and real data and some visual results on pixel-
level domain adaptation.

1. Details of our Scene Model
In this section we provide a comprehensive list of all

attributes (parameters) contained in our scene model, ex-
plain the annotation process on real images and analyze the
resulting data set statistics.

1.1. Scene attributes

We first provide a comprehensive list of scene attributes
(parameters) that our model considers in Tab. 1. The table
describes each attribute, assigns a unique ID that we later
use as reference and tells whether or not the attribute was
manually annotated for real images.

A directed acyclic graph relates the scene attributes and
can be used for sampling synthetic road scenes. Since the
graph is directed and acyclic, ancestral sampling can be
employed for efficient generation of data [1]. We refer to
Sec. 2 and Fig. 5 for the actual relations between the scene
attributes. The (conditional) probability distributions for
each node in the graph are hand-defined such that diverse
scenes are encouraged, i.e., more uniform distributions for
many attributes are used. Hard constraints for infeasible
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outcomes are enforced by setting some probabilities to 0.
Finally, we also used slightly different settings for the two
data sets KITTI [3] and NuScenes [6], like the default/mean
lane width, the number of maximum lanes, etc., to reflect
the differences of road layouts in different geographical lo-
cations.

1.2. Annotation of scene attributes

As described in the main paper, we collected scene at-
tribute annotation for real images on both KITTI [3] and
NuScenes [6] data sets. The list of attributes we are col-
lecting is highlighted with green IDs in Tab. 1. It can be
easily imagined that some of these attributes are easier to
annotate than others. Asking a human annotator whether
the road the car is driving on is a curve or not is relatively
easy compared to asking for a centimeter-accurate estimate
of the distance to a side road. To annotate attributes related
to distances or widths more information is required to be
shown to the annotator than the plain RGB image. In our
case, we have access to Lidar point clouds for both data sets,
which aids the annotator by providing distances for some
reference points in the image. Fig. 1 shows our annotation
interface, where available pixels with depth information are
highlighted in red. In addition to RGB and depth, we also
provide a semantic segmentation and a top-view map from
OpenStreetMap [7] if GPS was available and accurate.

We found that the depth information was crucial for an-
notators to estimate distances to intersections. Nonetheless,
we also found that annotations for distances perpendicular
to the camera axis, e.g., the width of lanes or sidewalks,
are difficult, which is why we dropped these attributes for
annotation. Note, however, that these attributes are very well
included in our model and simulated data!

1.3. Data distribution of scene attributes

Finally, we show the distribution of binary attributes Θb
on both the KITTI [3] and the simulated data sets. Fig. 2
shows the distribution on training and testing set, where we
can observe a few categories with a strong class imbalance.
Attributes B4, B8 and B11 are very rare. Fig. 3 shows the
same statistics for the NuScenes [6] data set and again the



ID Description
B1 Is the main road curved?
B2 Is the main road a one-way?
B3 Does the main road have a delimiter?
B4 Is there a delimiter between road and side walks?
B5 Does a sidewalk exist on the left of the main road?
B6 Does a sidewalk exist on the right of the main

road?
B7 Does a crosswalk exist before the intersection?
B8 Does a crosswalk exist after the intersection?
B9 Does a crosswalk exist on the left side road of the

intersection?
B10 Does a crosswalk exist on right side road of the

intersection?
B11 Does a crosswalk exist on the main road w/o in-

tersection?
B12 Does a left side road exist?
B13 Does a right side road exist?
B14 Does the main road end after the side roads?
M1 Number of lanes on the left of the ego-lane (maxi-

mum 6)
M2 Number of lanes on the right of the ego-lane (max-

imum 6)
C1 Rotation angle of the main road (e.g., when car

makes a turn)
C2 Width of the right side road
C3 Width of the left side road
C4 Width of a delimiter on the main road
C5 Distance to right side street
C6 Distance to left side street
C7 Distance to crosswalk on the main road without

intersections
C8 Width of delimiter between main road and side-

walk
C9 Curve radius of the main road
C10-22 Lane widths (6× 2 + 1)

Table 1: The list of all our scene attributes Θ is divided into
groups as in the main paper: binary Θb, multi-class Θm and
continuous Θc. Each attribute is assigned an ID preceded
by its group ID (B, M or C). The color of the ID indicates
if manual annotation on real data exists (green). Attributes
only available in simulation are marked red.

distributions of binary classes are extremely biased in both
training and validation. Fig. 4 shows the distribution for
simulated data where we can observe a much more balanced
distribution. Simulated data is able to generate road layouts
that rarely occur in real data. Note that the simulated distri-
bution is hand-defined and can be adjusted to ones needs.

1.4. Evaluation metrics

The evaluation metric for binary and multi-class variables
chosen in the main paper is plain accuracy (Accu.-Bi and
Accu.-Mc). For most of our scene attributes the label dis-

Figure 1: The interface for annotating scene attributes. The
user sees the perspective RGB image on the top as well as
distances for sparse key points overlaid (the user can choose
to overlay or not and distances are displayed when hovering
over the image). The user also sees semantic segmentation
output, the semantic points mapped into the top-view via a
densely predicted depthmap (monocular depth estimation
trained on the sparse ground truth points) and the Open-
StreetMap map if GPS was available. The scene attributes
are put into a web form at the bottom part of the interface.
The user adjusts the web form which will re-render the scene
after every change and display the current scene rendering
at the bottom right.

tribution is balanced enough and computing accuracy is a
valid evaluation metric. However, some attributes are highly
imbalanced. We initially used precision and recall to com-
pute an F1-score, but found it actually more difficult to judge
the relative performance between different approaches due
to some extremely imbalanced attributes. This makes the
F1-score highly sensitive to correctly or incorrectly predict-
ing just a single test example (out of more than 2000 for
KITTI [3]). To remedy this issue in the future and to use the
F1-score, we plan to either exclude these few attributes or,
preferably, to increase the quantity of our test set.



(a) (b)
Figure 2: Data distribution in KITTI [3] training (a) and test (b) set for binary classes.

(a) (b)
Figure 3: Data distribution in NuScenes [6] training (a) and test (b) set for binary classes.

2. Graphical model details
In this section, we provide more details for our single-

image and temporal CRFs, including detailed mathemat-
ical forms of potential functions that we omit in the
main paper due to space limitations as well as the con-
straints/dependencies we enforce between scene attributes.
An illustration of our graphical model can be viewed in
Fig. 5.

2.1. Potential functions in single image CRF

Here we provide detailed information about how we de-
fine S,Q and fc in our single image CRF. Details can be
viewed in Tab. 2.

2.2. Potential functions in temporal CRF

Denoting a video sequence as V = {xt}, where t ∈
T = {1, . . . , T} is the frame index, we enforce temporal

smoothness by introducing pairwise terms among frames as

Ev(ΘT |V) =
∑
t∈T

E(Θt|xt)+∑
t∈T −1,i,p

Efp(Θt
b[i],Θt+1

b [i],Θt
m[p],Θt+1

m [p])+

∑
t∈T −1,m

Evp(Θt
c[m],Θt+1

c [m]) ,

(1)

where ΘT and Θt are the overall attribute predictions in the
entire video sequence and that of the t-th frame, respectively,
and T −1 = {1, . . . , T − 1}.

The newly introduced potential Efp enforces temporal
consistency between consecutive frames and is defined as

wcls × ([Θt
b[i] 6= Θt+1

b [i]] + [Θt
m[p] 6= Θt+1

m [p]]) , (2)

where wcls is a hyper-parameter controlling the penalty of



Figure 4: Data distribution in simulated data set for binary
classes.

Figure 5: The illustration of our single image CRF. The
green, red and blue circles represent the binary, multi-class
and continuous group of variables, respectively. The number
inside the circle denotes the i-th, p-th and m-th variable of
the corresponding variable group.

assigning different labels to the same scene attribute in con-
secutive frames. In practice, we set wcls = 1000 so that
we will receive high penalties when our pre-defined rules
are violated. The second new potential, Evp, allows smooth
changes for continuous variables and is defined as

Evp(Θt
c[m],Θt+1

c [m]) = ‖Θt
c[m]−Θt+1

c [m]‖2 . (3)

Finally, note that due to the fact that ground truth is not
available for all frames, we do not introduce per-potential
weights. However, our CRF is amenable to piece-wise [8] or
joint learning [2, 9] if ground-truth is provided.

3. Network architectures
We further provide figures that detail the neural network

architectures used for the functions g(·; γg), h(·; γh) and
d(·; γd) of our proposed approach. As a reminder, g takes
a semantic top-view x ∈ RH×W×C as input and com-
putes a one-dimensional feature vector fx ∈ RD. The
function h takes fx as input and predicts the final scene
model parameters Θb, Θm and Θc via a multi-task net-
work. The discriminator function d is used for bridging
the domain gap and makes a binary decision (“real” or
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4 8
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2 2
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fc

Θc[2] = 0 Θm[2] 6= 0
Θc[3] = 0 Θm[1] 6= 0
Θb[2] = 1 Θb[3] = 1
Θb[9] = 1 Θb[12] = 0
Θb[10] = 1 Θb[13] = 0
Θb[12] = 0 Θc[6] = 1
Θb[13] = 0 Θc[5] = 1
Θb[7] = 1 Θb[12] = 0 Θb[13] = 0
Θb[8] = 1 Θb[12] = 0 Θb[13] = 0
Θb[14] = 1 Θb[12] = 0 Θb[13] = 0
Θb[11] = 1 Θb[12] = 0 Θb[13] = 1
Θb[11] = 1 Θb[12] = 1 Θb[13] = 0
Θb[11] = 1 Θb[12] = 1 Θb[13] = 1
Θb[4] = 1 Θb[5] = 0 Θb[6] = 0

Table 2: Definition of S,Q and fc in our graphical
model. Note that S = {(i, p)} and Q = {(i,m)}.
fc(Θb[i],Θc[p],Θc[m]) defines all the conflicts in multi-task
attribute predictions.

“fake”) for inputs fx. Fig. 6 shows the architecture of these
functions. Here we represent each convolutional layer as
Conv{k} : dim in − dim out − fs − s, where dim in is
the number of input feature channels, dim out is the number
of output feature channels, fs is the filter size and s is the
stride length. We represent each fully connected layer as
FC{k} : dim in−dim out. After each convolutional layer,
batch normalization [4] and a leaky ReLU layer [5] (with
α = 0.2) are added. Except for the last fully connected layer,
every fully connected layer in d and h are followed by batch
normalization [4] and ReLU.

Due to space limitations in the main paper, Figure 5 (high-
level design of baseline methods and our proposed approach)
turned out relatively small. We thus show the same figure
again here in Fig. 7 where we split it into two separate rows
for a better display.

4. Ablation Study

For our proposed method, H-BEV+DA, we report the
results of the ablation study for various hyper-parameters.
Tables 3 to 7 show the outcomes for the following param-
eters, respectively: learning rate, dimensionality of neural
networks g and h, number of epochs for training, weightings
for loss functions of real and simulated data, as well as the
adversarial loss. All experiments are done on the KITTI



Figure 6: Network Architectures of g (left), h (right top) and
d (right bottom).

Learning rate Accu-Bin↑ Accu-Mc↑ MSE↓ IoU↑
1e-2 0.792 0.734 0.147 0.349
1e-3 0.819 0.760 0.156 0.363
2e-4 0.819 0.724 0.107 0.324
1e-4 0.812 0.717 0.112 0.316
5e-5 0.794 0.707 0.082 0.301
1e-5 0.788 0.676 0.123 0.238

Table 3: Varying the learning rate for H-BEV+DA on
KITTI.

Dim. g & h Accu-Bin↑ Accu-Mc↑ MSE↓ IoU↑
32 & 64 0.824 0.732 0.154 0.410
64 & 128 0.824 0.756 0.128 0.399
256 & 1024 0.823 0.773 0.116 0.363
1024 & 2048 0.829 0.759 0.151 0.382
4096 & 4096 0.826 0.735 0.185 0.365

Table 4: Varying the feature dimensionality of neural net-
works g and h for H-BEV+DA on KITTI.

# Epochs Accu-Bin↑ Accu-Mc↑ MSE↓ IoU↑
1 0.800 0.706 0.096 0.193
5 0.807 0.662 0.097 0.260
10 0.812 0.721 0.135 0.325
50 0.823 0.747 0.142 0.345
100 0.812 0.740 0.148 0.351
200 0.816 0.793 0.136 0.354

Table 5: Varying the number of epochs of training for H-
BEV+DA on KITTI.

data set [3]. We did a similar hyper-parameter search for all
baselines reported in the main paper and chose best models
accordingly.

Weights λr & λs Accu-Bin↑ Accu-Mc↑ MSE↓ IoU↑
1.0 & 1.0 0.825 0.727 0.099 0.384
1.0 & 0.1 0.812 0.739 0.112 0.370
0.1 & 1.0 0.822 0.755 0.131 0.368
1.0 & 2.0 0.821 0.753 0.145 0.363
2.0 & 1.0 0.828 0.775 0.161 0.369
1.0 & 5.0 0.821 0.748 0.137 0.348
5.0 & 1.0 0.820 0.745 0.146 0.329

Table 6: Varying the weight of the loss functions for real and
simulated data, λr and λs, for H-BEV+DA on KITTI.

Weight λadv Accu-Bin↑ Accu-Mc↑ MSE↓ IoU↑
0.1 0.828 0.777 0.119 0.375
0.5 0.815 0.750 0.135 0.379
1.0 0.821 0.742 0.165 0.380
2.0 0.819 0.793 0.163 0.367
5.0 0.825 0.756 0.150 0.357
10.0 0.827 0.734 0.109 0.372

Table 7: Varying the weight of the adversarial loss λadv for
H-BEV+DA on KITTI.

5. Domain gap between synthetic and real data

Due to the noise as well as the limitations of the percep-
tion power of sensors, the presence of domain gaps between
real and synthetic data is inevitable. However, we claim
that the noise pattern that appears in the real top-view map,
which is mainly caused by limited field of view (FOV) of
the perspective camera along with the sparsity of data points
that correspond to the marginal area of a camera’s perceptive
field, is structured and learnable.

As our initial attempts to bridging this domain gap, we
conducted experiments with pixel-level domain adaptation,
which is easy to visualize and helps us better understand
the process of the domain adaptation. We use a similar
method for pixel-level domain adaptation as proposed in [10].
Different from [10], which directly predicts each pixel’s
RGB value in the transferred domain, we instead manipulate
the input image by predicting a noise mask as well as a pixel
flow map to mimic the noise in the input domain.

While we ultimately chose feature-level domain adapta-
tion due to its effectiveness and simplicity in implementation,
as mentioned in the main paper, we still want to share our
initial results with pixel-level domain adaptation here be-
cause it provides further insights. To better illustrate that
domain adaptation has noticeable positive effects on training
the whole system, we thus show both qualitative results on
domain adaptation on the pixel-level in Fig. 8 and quanti-
tative results on performance improvements in predicting
different attributes in Tab. 8. As can be seen in Fig. 8, the do-
main adaptation module learns to blend a similar pattern of
the noise that occurs in the real data onto the ideal synthetic
data, thereby creating real-like data. In Tab. 8, we notice a



Figure 7: Overview of all models we are comparing in our quantitative evaluation in Table 1 of the main paper. All “M-” and
“S-” models (manual annotation and simulation-only) are in the first row, while the proposed hybrid (“H-”) models are in the
second row. Note that “CNN”, “MLP” and “Discr” correspond to the functions g, h and d, respectively.

clear increase in classification accuracy for attributes B2, B3,
B7, B8, B12 and B14 after adding domain adaptation (DA).
We also see observable drops in L1-distance on continuous
attributes like C2, C3 and C7.
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Figure 8: Bridging the domain gap with pixel-level DA.

Method B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14
S-BEV .622 .013 .518 .959 .599 .768 .704 .733 .917 .853 .920 .556 .768 .786
S-BEV+DA .622 .726 .822 .959 .589 .722 .905 1.00 .917 .898 .921 .728 .796 .851
M-BEV .662 .824 .622 .959 .565 .493 .959 1.00 .917 .898 .920 .822 .867 .969
H-BEV+DA .634 .963 .734 .959 .612 .651 .911 1.00 .917 .898 .921 .796 .865 .964

Method M1 M2 C1 C2 C3 C4 C5 C6 C7 C8 C9
M-BEV .667 .886 .126 .181 .192 .146 .176 .208 .637 .053 .094
H-BEV+DA .688 .896 .146 .105 .086 .128 .219 .233 .570 .051 .093

Table 8: Per-class accuracy (B&M) and L1-distance (C) with and without pixel-level DA on data set KITTI.


