
Supplementary Material
ELASTIC: Improving CNNs with Dynamic Scaling Policies

Huiyu Wang1 Aniruddha Kembhavi2 Ali Farhadi2,3,4 Alan Yuille1 Mohammad Rastegari2,4
1Johns Hopkins University 2PRIOR @ Allen Institute for AI

3University of Washington 4Xnor.ai
huiyu@jhu.edu {anik,mohammadr}@allenai.org ali@cs.uw.edu alan.l.yuille@gmail.com

This supplementary material contains the following:

A. sElastic: a method to reduce flops while still reducing error rates

B. Details of the Elastic architecture and comparisons to current models

C. Screenshots of a demo visualizing different scale policies for ImageNet val images

D. Semantic segmentation qualitative results

In addition, our code and pre-trained models are available here: https://github.com/allenai/elastic
And our project website is online here: https://prior.allenai.org/projects/elastic

A. sElastic (simple Elastic)
A simple way of augmenting current models with Elastic is directly replacing bottlenecks by Elastic bottlenecks. This

leads to models with less FLOPs and exactly the same number of parameters, which we refer to as sElastic (simple Elastic).
This is in comparison to Elastic models that maintain the number of FLOPs and parameters. As shown in Table 1, sElastic
already outperforms some of the original models, with less FLOPs. Note that DLA-X60+sElastic in Table 1 is equivalent to
DLA-X60+Elastic (in Table 2 in the original paper), i.e. we do not add/remove layers in different scales.

Model # Params FLOPs Top-1 Top-5
ResNext50 25.0M 4.2B 22.2 -
ResNext50* 25.0M 4.2B 22.23 6.25
ResNext50+sElastic 25.0M 3.4B 22.03 6.07
ResNeXt50+Elastic 25.2M 4.2B 21.56 5.83
DLA-X60 17.6M 3.6B 21.8 -
DLA-X60* 17.6M 3.6B 21.92 6.03
DLA-X60+sElastic 17.6M 3.2B 21.25 5.71
DLA-X60+Elastic 17.6M 3.2B 21.25 5.71
DLA-X102 26.8M 6.0B 21.5 -
DLA-X102+sElastic 26.8M 5.0B 21.0 5.66
DLA-X102+Elastic 24.9M 6.0B 20.71 5.38

Table 1: Error rates for sElastic on the ImageNet validation set. sElastic models with reduced FLOPs already perform
better than some of the original models. We also provide the Elastic versions from the original paper as a reference.

1

https://github.com/allenai/elastic
https://prior.allenai.org/projects/elastic


B. Elastic Architecture Details
SElastic already outperforms original models. However, only applying downsamplings equivalently shifts computation

from low level to higher level, which could cause lack of low level features to support high level processing. Also, sElastic
reduces FLOPs so that its accuracy is not fairly comparable with the original model. For these two reasons, we rearrange
computation distribution in each resolution, and this leads to our final Elastic model.

Consider ResNeXt-50 as an example. The original model assigns [3, 4, 6, 3] blocks respectively to [56, 28, 14, 7] four
scales. As shown in Table 2, sElastic simply replaces original bottlenecks with Elastic bottlenecks. In Elastic, we roughly
match the scale distribution of the original model by assigning [6, 8, 5, 3] blocks to those resolutions, as shown in Table
2. Note that half of each block processes information at a higher level. This modification also leads to matched number of
parameters, and matched number of FLOPs. For ResNeXt101, we use a block design of [12, 14, 20, 3]. DenseNet+Elastic
and DLA+Elastic architectures are shown respectively in Table 3 and Table 4. Note that these block designs were picked
to match the original number of parameters and FLOPs, so we didn’t tune them as hyper-parameters. Tuning them could
probably lead to even lower error rates.

stage ResNeXt50 ResNeXt50+sElastic ResNeXt50+Elastic
conv1 7×7, 64, stride 2, 3×3 max pool, stride 2

conv2
56×56

 1×1, 128
3×3, 128, C=32

1×1, 256

× 3


2×down, 28×28

1×1, 64 1×1, 64
3×3, 64, C=16 + 3×3, 64, C=16

1×1, 256 1×1, 256
2×up, 56×56

× 3


2×down, 28×28

1×1, 64 1×1, 64
3×3, 64, C=16 + 3×3, 64, C=16

1×1, 256 1×1, 256
2×up, 56×56

× 6

conv3
28×28

 1×1, 256
3×3, 256, C=32

1×1, 512

× 4


2× down, 14 × 14

1×1, 128 1×1, 128
3×3, 128, C=16 + 3×3, 128, C=16

1×1, 512 1×1, 512
2× up, 28 × 28

× 4


2× down, 14 × 14

1×1, 128 1×1, 128
3×3, 128, C=16 + 3×3, 128, C=16

1×1, 512 1×1, 512
2× up, 28 × 28

× 8

conv4
14×14

 1×1, 512
3×3, 512, C=32

1×1, 1024

× 6


2× down, 7 × 7

1×1, 256 1×1, 256
3×3, 256, C=16 + 3×3, 256, C=16

1×1, 1024 1×1, 1024
2× up, 14 × 14

× 6


2× down, 7 × 7

1×1, 256 1×1, 256
3×3, 256, C=16 + 3×3, 256, C=16

1×1, 1024 1×1, 1024
2× up, 14 × 14

× 5

conv5
7×7

 1×1, 1024
3×3, 1024, C=32

1×1, 2048

× 3

1×1 global average pool, 1000-d fc, softmax
Params. 25.0 ×106 25.0 ×106 25.2 ×106

FLOPs 4.2 ×109 3.4 ×109 4.2 ×109

Table 2: ResNeXt50 vs. ResNeXt50+sElastic vs. ResNeXt50+Elastic. ResNeXt50+Elastic employs two resolutions in
each block, and keeps output resolution high for more blocks, compared with ResNeXt50.

C. Scale policy demo
Apart from Figure 1 and Figure 6 in the main paper, we made an interactive HTML based demo of our learned scale

policy, that allows a user to explore images in the validation set and their scale policies. In the following screenshots we show
some images where ResNeXt50+Elastic improves over the original ResNeXt50 on ImageNet validation set. Figures 1 and
2 show two screenshots. Each screenshot shows images with their classes, their scale policy visualizations, and their scale
policy scores at all layers. The user can search through images and sort these images by their categories or their scale policy
score at any layer. We refer interested reader to section 4.1.1 of the main paper for the definition of scale policy score and
more discussions on different scale policies.

D. Semantic segmentation results
Some visualizations of our semantic segmentation results are shown in Figure 3, demonstrating that Elastic segments

scale-challenging objects well on PASCAL VOC.



stage DenseNet201 DenseNet201+Elastic
conv1 7×7, 64, stride 2, 3×3 max pool, stride 2

conv2
56×56

[
1×1, 128
3×3, 32

]
× 6

 1×1, 64
3×3, 32 +

2×down, 28×28
1×1, 64
3×3, 32

2×up, 56×56

× 10

trans1 1×1 conv, 2×2 average pool, stride 2

conv3
28×28

[
1×1, 128
3×3, 32

]
× 12

 1×1, 64
3×3, 32 +

2×down, 14×14
1×1, 64
3×3, 32

2×up, 28×28

× 20

trans2 1×1 conv, 2×2 average pool, stride 2

conv4
14×14

[
1×1, 128
3×3, 32

]
× 48

 1×1, 64
3×3, 32 +

2×down, 7×7
1×1, 64
3×3, 32

2×up, 14×14

× 40

trans3 1×1 conv, 2×2 average pool, stride 2
conv5
7×7

[
1×1, 128
3×3, 32

]
× 32

[
1×1, 128
3×3, 32

]
× 30

1×1 global average pool, 1000-d fc, softmax
Params. 20.0 ×106 19.5 ×106

FLOPs 4.4 ×109 4.2 ×109

Table 3: DenseNet201 vs. DenseNet201+Elastic. DenseNet+Elastic follows a similar modification as ResNeXt+Elastic, i.e.
two resolutions in each block and more blocks in high resolutions.

Name Block Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Params. FLOPs
DLA-X60 Split32 16 32 1-128 2-256 3-512 1-1024 17.7 ×106 3.6 ×109

DLA-X60+Elastic Split32+Elastic 16 32 1-128 2-256 3-512 1-1024 17.7 ×106 3.2 ×109

DLA-X102 Split32 16 32 1-128 3-256 4-512 1-1024 26.8 ×106 6.0 ×109

DLA-X102+sElastic Split32+Elastic 16 32 1-128 3-256 4-512 1-1024 26.8 ×106 5.0 ×109

DLA-X102+Elastic Split50+Elastic 16 32 3-128 3-256 3-512 1-1024 24.9 ×106 6.0 ×109

Table 4: DLA model architectures. Following DLA, we show our DLA classification architectures in the table. Split32
means a ResNeXt bottleneck with 32 paths while Split50 means a ResNeXt bottleneck with 50 paths. Stages 3 to 6 show d-n
where d is the aggregation depth and n is the number of channels.



Figure 1: Screenshots of the scale policy demo. Examples of low scale scores at layer 4. These images usually contain a
simple pattern.

Figure 2: Screenshots of the scale policy demo. Examples of high scale scores at layer 4. These images require detailed
processing at high resolutions.



(a) Validation Images (b) ResNeXt101 (c) ResNeXt101+Elastic (d) Ground truth

Figure 3: Semantic segmentation results on PASCAL VOC. Elastic improves most on scale-challenging images.


