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Section 1 presents a detailed illustration of the proposed
parallax-attention mechanism. Section 2 describes the de-
tails of the Flickr1024 dataset. Section 3 provides several
additional analyses on the flexibility of our PASSRnet under
different baselines and depths. Finally, Section 4 provides
several additional comparative results between our PASSR-
net and the state-of-the-art methods.

1. Parallax-attention Mechanism
1.1. Toy Example

The parallax-attention mechanism is illustrated with a
toy example in Fig. 1. Given a stereo image pair ILleft

and ILright of size R30×30, parallax-attention maps Mleft→right

and Mright→left of size R30×30×30 can be obtained by our
parallax-attention module (PAM). Note that, each slice of
the parallax-attention maps (e.g., Mright→left(i, :, :)) delivers
the dependency between corresponding rows (i.e., ILleft(i, :)

and ILright(i, :)). It can be observed from Fig. 1 (a) that
parallax-attention maps are identity matrices if there is no
disparity. That is because, the jth pixel in ILleft(i, :) corre-
sponds to the jth pixel in ILright(i, :). Therefore, position
(j, j) in the parallax-attention map is focused on. For re-
gions where disparities exist (e.g., the red region in Fig.
1 (b) with disparity of 5), the jth pixel in ILleft(i, :) corre-
sponds to the (j−5)th pixel in ILright(i, :). Therefore, posi-
tion (j, j − 5) in the parallax-attention map is focused on.
Consequently, stereo correspondence can be depicted by the
positions of focused pixels in parallax-attention maps. Be-
sides, occlusion can also be encoded. Specifically, it can
be observed from Fig. 1 (c) that several horizontal re-
gions are “discarded” without any position being focused
on. That is because, these regions in ILleft(i, :) are occluded
in ILright(i, :), thus no correspondence should be focused on.
Similar “discarded” vertical regions are also caused by oc-
clusion. Moreover, occlusion can also be inferred from the
cycle-attention maps.

It should be noted that, only integer disparities are con-
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Figure 1: A toy example illustration of the parallax-
attention and cycle-attention maps generated by our PAM.
The attention maps (30×30) correspond to the regions (1×
30) marked by a yellow stroke. In (a) and (b), the first row
represents left/right stereo images, the second row stands
for parallax-attention maps Mright→left and Mleft→right, and
the last row represents cycle-attention maps Mleft→right→left

and Mright→left→right.

sidered in our toy example, which is not the real case. In
practice, our PAM can focus on several adjacent pixels to
address sub-pixel disparities. Due to the softmax layer used
in PAM, several pixels in “discarded” horizontal regions
may be incorrectly focused on. However, these occluded
regions can be excluded using valid masks.

1.2. Batch-wise Matrix Multiplication

⊗ represents batch-wise matrix multiplication between
two tensors1. Take Eq. (1) for an example (as shown

1⊗ can be implemented using tf.matmul() or torch.matmul().
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Figure 2: An illustration of batch-wise matrix multiplication ⊗.

in Fig. 2), the product of the ith corresponding slices
Mright→left(i, :, :) ∈ RW×W and ILright(i, :, :) ∈ RW×C deter-
mines the ith slice of ILleft, i.e., ILleft(i, :, :)∈RW×C. All these
slices are concatenated to obtain ILleft∈RH×W×C.

1.3. Smoothness Loss

Take Mright→left as an example, Mright→left(i, j, k) mea-
sures the contribution of position (i, k) in ILright to posi-
tion (i, j) in ILleft using the similarity between them (i.e.,
S(ILleft(i, j),I

L
right(i, k))). Our smoothness hypothesis ar-

gues that, S(ILleft(i+1, j), ILright(i+1, k)) and S(ILleft(i, j+

1), ILright(i, k+1)) should be close to S(ILleft(i, j),I
L
right(i, k)).

That is, smoothness in correspondence (disparity) space can
be encouraged.

2. The Flickr1024 Dataset
Although several stereo datasets such as Middlebury and

KITTI are already available, these datasets are mainly pro-
posed for stereo matching. Further, the Middlebury dataset
only consists of close shots of man-made objects, while
the KITTI 2012 and KITTI 2015 datasets only consist of
road scenes. For stereo image super-resolution (SR) task,
a large dataset which covers diverse scenes and consists of
images with high quality and rich details is required. There-
fore, we introduce a new Flickr1024 dataset for stereo im-
age SR. The Flickr1024 dataset is available at: https:
//yingqianwang.github.io/Flickr1024/.

2.1. Data Collection

We manually collected 1024 RGB stereo image pairs
from Flickr using tags such as stereophotography, stereo-
scopic and cross-eye 3D.

2.2. Preprocessing

All of the 1024 images are taken by amateur photogra-
phers using dual lens or dual cameras. Since these images

Figure 3: Two stereograms collected from Flickr.

are stereograms (as shown in Fig. 3) provided by amateurs,
prepocessing is required to generate our dataset. Specifi-
cally, we first cut each stereogram into an image pair and
crop black margins. We exchange the left image and the
right image of an image pair since the stereograms are pro-
vided in cross-eye mode. We then perform uncalibrated
epipolar rectification and crop black margins again. Note
that, the stereo image pairs are originally shifted to a com-
mon focus plane by the amateurs to produce a perception of
3D for viewers. In other words, both positive and negative
disparities exist in the image pairs. Thus, we roughly shift
these images back to ensure zero disparity corresponds to
infinite depth. For close shots, since regions with infinite
depth are unavailable, we just shift these images to make
the minimum disparity over a threshold (empirically set to

https://yingqianwang.github.io/Flickr1024/
https://yingqianwang.github.io/Flickr1024/
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Figure 4: Samples of different scenes covered in the
Flickr1024 dataset.

Table 1: Comparison between the Middlebury, KITTI 2012,
KITTI 2015 and Flickr1024 datasets. Only the training sets
of the KITTI 2012 and KITTI 2015 datasets are considered.

Dataset image pairs ppi CNNIQA (↓) entropy (↑)
Middlebury 65 3511605 20.18 7.12
KITTI 2012 194 462564 20.32 7.09
KITTI 2015 200 465573 22.86 7.02
Flickr1024 1024 800486 19.75 7.06

40 pixels in our dataset). Finally, we crop each resulting
image to multiple of 12 pixels on both axes following [1].

2.3. Comparison to Existing Datasets

We compare our Flickr1024 dataset to three widely
used stereo datasets including Middlebury, KITTI 2012 and
KITTI 2015. Comparative results are shown in Table 1.
It is clear that our Flickr1024 dataset is larger than other
datasets by at least 5 times. Besides, the pixel per image
(ppi) value of our Flickr1024 dataset is nearly 2 times that
of the KITTI 2012 and KITTI 2015 datasets. Although the
Middlebury dataset has the highest ppi value, the number
of image pairs in this dataset is very limited. Further, the
CNNIQA [2] and entropy of our Flickr1024 dataset is com-
parable to or even better than other datasets, which demon-
strates the good image quality of our Flickr1024 dataset.
Moreover, the Flickr1024 dataset covers a large diversity
of scenes, including landscapes, urban scenes, people and
man-made objects, as shown in Fig. 4.

3. Performance under Different Baselines and
Depths

We furhter tested the flexibility of our PASSRnet and
StereoSR [3] with respect to different baselines and depths.

(a) Structure chart of the camera gantry

(b) Real gantry with a camera (c) Controller 
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Figure 5: An illustration of the device used for stereo image
acquisition.

3.1. Baselines

We used a view-by-view scanning scheme as in [4] to ob-
tain stereo image pairs with different baselines. The device
used for image acquisition is shown in Fig. 5. Specifically,
we first installed a camera on the gantry and acquired an
image of a static scene. This image was referred to as the
left image. Then, the camera was controlled to move right-
ward along the horizontal rail with different distances. The
images acquired at different locations were referred to as
right images with different baselines. Five different scenes
were used for image acquisition. For each scene, we ob-
tained three stereo image pairs with short baselines (with
disparities around 20 pixels), medium baselines (with dis-
parities around 60 pixels) and large baselines (with dispari-
ties around 180 pixels). Results achieved by StereoSR and
our PASSRnet on these stereo image pairs with different
baselines are shown in Table 2.

It can be observed that our PASSRnet outperforms Stere-
oSR by 1.14 dB in terms of PSNR for stereo image
pairs with short baselines. For stereo images pairs with
large baselines, the improvement is increased to 1.30 dB.
Compared to StereoSR, our PASSRnet effectively captures
global correspondence for SR. Therefore, superior flexibil-
ity to disparity variations is achieved.

3.2. Depths

We collected 30 stereo image pairs from Flickr. These
image pairs cover different scenes with different depths.
We divided these image pairs into three groups with small
depths (with disparities around 150 pixels), medium depths
(with disparities around 80 pixels) and large depths (with
disparities around 20 pixels). Results achieved by StereoSR



Table 2: Comparison between our PASSRnet and StereoSR
[3] on stereo images with different baselines for 2× SR.

Baseline StereoSR [3] Ours
PSNR SSIM PSNR SSIM

Large 37.13 0.9605 38.43(↑1.30) 0.9690(↑0.085)
Medium 37.35 0.9628 38.50(↑1.15) 0.9692(↑0.064)
Short 37.36 0.9628 38.50(↑1.14) 0.9693(↑0.065)

Table 3: Comparison between our PASSRnet and StereoSR
[3] on stereo images with different depths for 2× SR.

Depth StereoSR [3] Ours
PSNR SSIM PSNR SSIM

Small 37.60 0.9652 39.03(↑1.43) 0.9749(↑0.0097)
Medium 31.08 0.9145 32.37(↑1.29) 0.9219(↑0.0074)
Large 36.36 0.9596 37.55(↑1.19) 0.9646(↑0.0050)

and our PASSRnet on these stereo image pairs with differ-
ent depths are shown in Table 3.

It can be observed that our PASSRnet achieves high im-
provement on stereo image pairs with small depths. That is
because, the global receptive field of the parallax-attention
mechanism facilitates our PASSRnet to capture global cor-
respondence for performance improvement. In contrast, the
fixed maximum disparity used in StereoSR hinders long-
range correspondence to be employed. Therefore, the per-
formance of StereoSR is limited.

4. Additional Visual Comparison
In this section, additional visual comparisons between

our PASSRnet and the state-of-the-art methods are pre-
sented in Figs. 6 and 7. It can be observed that our PASS-
Rnet recovers finer details with fewer artifacts, such as the
stripe in Fig. 6 and the railings in Fig. 7. We further com-
pare our PASSRnet with the state-of-the-arts on a stereo im-
age pair acquired in our laboratory. The visual comparison
is shown in Fig. 8. It can be observed from zoom-in re-
gions that, the separate lines on the resolution test chart can
be clearly distinguished in the SR images generated by our
PASSRnet.
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Figure 6: Visual comparison for 4× SR. These results are achieved on “Motorcycle” of the Middlebury dataset.
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Figure 7: Visual comparison for 4× SR. These results are achieved on “test image 004” of the KITTI 2015 dataset.
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Figure 8: Visual comparison for 2× SR. These results are achieved on a stereo image pair acquired in our laboratory.


