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In this supplementary material, we summarize the intu-
itive ideals and theory of topological data analysis, and also
prove Lemma 1 given in the paper.

1. Topological data analysis theory
This section discusses the mathematical theory of topo-

logical data analysis. It is not possible to give a thorough
introduction of the theory given space constraints. Here, we
give some basic notations that are helpful for understanding
the intuitive ideals of topological data analysis.

1.1. Basic topological objects

We first introduce the definition of simplices and simpli-
cial complexes that are often considered as basic objects to
understand topology theory [1, 2].

Definition 1 (Simplex). A k-dimensional simplex σ refers
to the convex hull of k + 1 affinely independent vertices
{x0, x2, · · · , xk} ∈ Rk+1.

With the definition of simplex, a higher dimensional gen-
eralization graphs can be built, called simplicial complexes.
Simplicial complexes contain both topological and combina-
torial properties that are very useful for TDA.

Definition 2 (Simplical complex). A simplicial complex K
is a finite collection of simplices σ such that the face τ of σ
also in K, and the intersection σ1 ∩ σ2 of any two simplices
σ1, σ2 ∈ K is either empty or a face of both σ1 and σ2.

Given a data set or a topological space, there exist many
ways to build simplicial complexes. Here, we present the
widely used Rips complex.

Definition 3 (Rips complex). Given a finite collection of
data is X = {x1, · · · , xk} in Euclidean space and r > 0.
The Rips complex denoted byRr(X) is a simplicial complex.
A k-simplex [xi0 , · · · , xik ] is inRr(X) if ‖xij − xil‖ ≤ 2r
for all 0 ≤ j, l ≤ k.
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1.2. Homology inference

To infer the homology, we begin with the concept of
filtration.

Definition 4 (Filtration). A filtration {K}k=0,··· ,m of a finite
simplicial complex K is an nested sequence of subcomplexes
satisfying

• ∅ = K0 ⊂ K1 · · · ⊂ Km = K

• Kk+1 = Kk ∪ sk+1 and sk+1 is a simplex of Kk+1.

Proposition 1. Let Hk(Ki) be the k-th dimensional homol-
ogy group for Ki, the inclusion ιi,j : Ki ↪→ Kj induces a
homomorphism on homology groups

ιki,j : Hk(Ki)→ Hk(Kj) (1)

Applying Proposition 1 to the filtration {K}i=1,··· ,n, we
have the following sequence of k-th dimensional chain com-
plex:

Hk(K0)→ Hk(K1)→ · · · → Hk(Kn) (2)

Persistence of the k-th homology. The k-th homology
group Hk(Ki) contains a set of homology classes that cap-
ture the k-dimensional cycles in complex Ki. A homology
class [α] is then said to be born at i, if [α] ∈ Hk(Ki) and
[α] /∈ Hk(Ki−1). [α] is born at i dies at j, if j is the smallest
index such that the class [α] is supported in the image of
ιki−1,j . A homology class [α] is then said to be born at Ki, if
i is the smallest index such that [α] is nontrivial in Hk(Ki).
The class [α] dies at Kj , if j is the smallest index such that
the class [α] is supported in the image of ι∗i,j . The interval
between the birth time i and the death time j reflects the
persistence of the topology feature represented by [α]. The
topological features with long lasting through {K}i=1,··· ,n
can be regarded as reliable structures, while ones with small
persistence are likely to be noise.

Homology and topological features. Homology charac-
terizes sets based on connected components and holes. Note
that 0-dimensional homology represents a connected compo-
nent and 1-dimensional homology represents a “cycle”.



Figure 1. A filtration of Rips complex and the 1-skeleton of the
complex. This filtration summarizes the births and deaths of one
hole as the radius r increase.

2. A toy example of TDA

As stated in the introduction, the most popular topologi-
cal descriptor in TDA is persistence diagram (PD) . Section
2 provides an example of PD construction using the height
function. In addition to a height function, the Rips complex
(Definition 3) can be also used to construct PD from data
points as shown in Fig. 1. Given a union of balls centered
on the set of points in Fig. 1, a Rips complex can be con-
structed by connecting points at scale r. Computing PD
consists of two sequential steps: filtration (Definition 4) con-
struction of Rips complex (Definition 3) and computing the
birth-death pairs of topological features on the created filtra-
tion. By increasing r, we can produce a sequence of Rips
complexes, defined as a filtration in Definition 4. As the ra-
dius grows r, features—such as connected components and
holes—appear and disappear. For instance, when r = t1,
there are three connected components representing three
0-dimensional topological feature. These three connected
components merge at r = t2. Moreover, a 1-dimensional
topological feature (the “cycle”) appears at r = t2 and dis-
appears when it merges with an connected component at t3.
The hole is born at r = t2 and dies at r = t3, the lifespan
of this hole is represented by a point (t2, t3) in the PD. The
resulting information is encoded by PD where the coordi-
nate of each point is the starting and the end point of the
corresponding interval.

PD heavily relies on their stability with respect to per-
turbations of the data, which promotes varieties of famous
TDA methods as reviewed in the related work. In addition to
the stability property, another principle motivation of TDA
is how to derive more effective topological features from
PDs so as to fit standard machine learning methods. Aim-
ing at above two motivations, we proposed a task-adapted
polynomial representation for PDs and prove two attractive
properties of the proposed method, i.e., stability and linear
separability.

3. Proof of Lemma 1

Lemma 1. Let u = (ux, uy) ∈ D be the point

in PD, exponential function gux(z) = e−
(ux−z)2

σ2 and
weighted function ω(u) = arctan(C(uy − ux)

2). Let

K =
√
2
(
1 +

√
π
σ

)
, then we have∫ ∞

−∞
|ω(u)gux(z)− ω(v)gvx(z)| dz ≤ K‖u− v‖∞ (3)

Proof. Note that for technical reasons, the points on the
diagonal L = {(ux, uy) : ux = uy} are considered as part
of every PDD. Let ω(u)gux(z)−ω(v)gvx(z) = 0, we have
a unique real solution

z∗ =
v2x − u2x + 2σ2 ln(ω(u)/ω(v))

2c

Then, we have

|ω(u) · gux(z)− ω(v) · gvx(z)| =∣∣∣∣∣
∫ z∗

−∞
ω(u)gux(z)− ω(v)gvx(z) +

∫ ∞
z∗

ω(v)gvx(z)− ω(u)gux(z)dz

∣∣∣∣∣
Consequently, we have the following equation∫ ∞

−∞
|ω(u)gux(z)− ω(v)gvx(z)| dz =

2

∫ z∗

−∞
|ω(u)gux(z)− ω(v)gvx(z)|dz

(4)

Let t = z−ux√
2σ

, we then compute∫ z∗

−∞
ω(u)gux(z)dz =

ω(u)√
π

∫ f(s,u,v)

−∞
e−t

2

dt

=
ω(u)√
π

(∫ 0

−∞
e−t

2

dt+

∫ f(s,u,v)

0

e−t
2

dt

)

=
ω(u)

2
(1 + erf(f(s, u, v))

(5)

where{
erf(x) = 2√

π

∫ x
0
e−t

2

dt

f(s, u, v) = z∗−ux√
2σ

= s2+2σ2 ln(ω(u)/ω(v))

2
√
2σs

, s = vx − ux
(6)

Let h(s, u, v) = −s2+2σ2 ln(ω(u)/ω(v))

2
√
2σs

and s = vx−ux, we
similarly obtain∫ z∗

−∞
ω(v)gvx(z)dz =

ω(v)

2
(1 + erf(h(s, u, v))) (7)

Based on Eq. (5) and Eq. (6), we have∫ ∞
−∞
|ω(u)gux(z)− ω(v)gvx(z)| dz

= |ω(u) · erf(f(s, u, v))− ω(v) · erf(h(s, u, v))|
(8)

LetH(s) = |ω(u) · erf(f(s, u, v))− ω(v) · erf(h(s, u, v))|,
we have H(0) = |ω(u) − ω(v)| according to Eq. (6). By



computing the roots of the second-order derivative H(s)′′,

we have supH(s)′ =
√

2
π

min{w(u),w(v)}
δ The primitive

function of H(s)′ satisfies

H(s) ≤ |ω(u)− ω(v)|+
√

2

π

min {w(u), w(v)}
δ

|s|

Based on the definition of s and ω(·), we have Based on the
definition of s and ω(·), we have

|ω(u) · erf(f(s, u, v))− ω(v) · erf(h(s, u, v))|

≤ |ω(u)− ω(v)|+
√

2

π

min{ω(u), ω(v)}
σ

|ux − vx|

≤ |ω(u)− ω(v)|+
√

π

2σ2
|ux − vx|

≤ |ω(u)− ω(v)|+
√

π

2σ2
‖u− v‖2

≤
(
|∇ω|+

√
π

2σ2

)
‖u− v‖2

(9)

since ‖ · ‖2 ≤
√
2‖ · ‖∞ ∈ R2, then

≤

(
√
2|∇ω|+

√
2π

σ2

)
‖u− v‖∞

≤

(
√
2 +

√
2π

σ2

)
‖u− v‖∞ since |∇ω| < 1

=
√
2

(
1 +

√
π

σ

)
‖u− v‖∞

Finally, Lemma 3.1 follows∫ ∞
−∞
|ω(u)gux(z)− ω(v)gvx(z)| dz

≤
√
2

(
1 +

√
π

σ

)
‖u− v‖∞

(10)

With Lemma 1 in mind, we turn to prove the persistence
vector is stable w.r.t. 1-Wasserstein distance between PDs.
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