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In this Supplementary Material, we provide details omit-
ted in the main text.

e Section A: additional details on our approach (Sec-
tion 4.2 of the main paper).

e Section B: results using SPS-STEREO [I1] (Sec-
tion 4.3 of the main paper).

e Section C: further analysis on depth estimation (Sec-
tion 4.3 of the main paper).

e Section D: additional results on the test set (Section 4.4
of the main paper).

e Section E: additional qualitative results (Section 4.5 of
the main paper).

A. Additional Details of Our Approach
A.l. Ground plane estimation

As mentioned in the main paper, AVOD [0] takes image-
specific ground planes as inputs. A ground plane is pa-
rameterized by a normal vector w = |[wy,wy,w,]’ €
R? and a ground height h € R. We estimate the pa-
rameters according to the pseudo-LiDAR points {p(") =
[2(7) y() 2(]TIN_ - (see Section 3 of the main paper).
Specifically, we consider points that are close to the camera
and fall into a certain range of possible ground heights:

(width) 15.0 > x > —15.0, (D)
(height) 1.86 > y > 1.5, )
(depth) 40.0 > z > 0.0. 3)

Ideally, all these points will be on the plane: w 'p +h = 0.
We fit the parameters with a straight-forward application of
RANSAC [2], in which we constraint w, = —1. We then
normalize the resulting w to have a unit 5 norm.

Table A: Comparison of different stereo disparity methods on
pseudo-LiDAR-based detection accuracy with AVOD. We report
APgev / AP3p (in %) of the moderate car category at IoU = 0.7.

Method Disparity APggy / AP3p
SPS-STEREO 39.1/28.3
Di1SPNET-S 36.3/27.0

AVOD | DISPNET-C 36.5/26.2
PSMNET 3902/274
PSMNET* 56.8/45.3

A.2. Pseudo disparity ground truth

We train a version of PSMNET [1] (named PSMNETx)
using the 3,712 training images of detection, instead of the
200 KITTI stereo images [4, 8]. We obtain pseudo dispar-
ity ground truth as follows: We project the corresponding
LiDAR points into the 2D image space, followed by apply-
ing Eq. (1) of the main paper to derive disparity from pixel
depth. If multiple LiDAR points are projected to a single
pixel location, we randomly keep one of them. We ignore
those pixels with no depth (disparity) in training PSMNET.

B. Results Using SPS-STEREO [11]

In Table A, we report the 3D object detection accuracy
of pseudo-LiDAR with SPS-STEREO [ ! ], a non-learning-
based stereo disparity approach. On the leaderboard of
KITTI stereo 2015, SPS-STEREO achieves 3.84% disparity
error, which is worse than the error of 1.86% by PSMNET
but better than 4.32% by DISPNET-C. The object detection
results with SPS-STEREO are on par with those with PSM-
NET and DISPNET, even if it is not learning-based.

C. Further Analysis on Depth Estimation

We study how over-smoothing the depth estimates
would impact the 3D object detection accuracy. We train
AVOD [6] and F-POINTNET [9] using pseudo-LiDAR with
PSMNET*. During evaluation, we obtain over-smoothed



Table B: The impact of over-smoothing the depth estimates
on the 3D detection results. We evaluate pseudo-LiDAR with
PSMNET*. We report APggv / AP3p (in %) of the moderate car
category at IoU = 0.7 on the validation set.

Detection algorithm
Depth estimates AVOD F-POINTNET
Non-smoothed 56.8/45.3 51.8/39.8
Over-smoothed | 53.7/37.8 48.3/31.6

depth estimates using an average kernel of size 11 x 11 on
the depth map. Table B shows the results: over-smoothing
leads to degraded performance, suggesting the importance
of high quality depth estimation for accurate 3D object de-
tection.

D. Additional Results on the Test Set

We report the results on the pedestrian and cyclist cate-
gories on the KITTT test set in Table C. For F-POINTNET
which takes 2D bounding boxes as inputs, [9] does not pro-
vide the 2D object detector trained on KITTI or the detected
2D boxes on the test images. Therefore, for the car category
we apply the released RRC detector [10] trained on KITTI
(see Table 5 in the main paper). For the pedestrian and cy-
clist categories, we apply Mask R-CNN [5] trained on MS
COCO [7]. The detected 2D boxes are then inputted into
F-POINTNET [9]. We note that, MS COCO has no cyclist
category. We thus use the detection results of bicycles as
the substitute.

On the pedestrian category, we see a similar gap between
pseudo-LiDAR and LiDAR as the validation set (cf. Table 4
in the main paper). However, on the pedestrian category we
see a drastic performance drop by pseudo-LiDAR. This is
likely due to the fact that cyclists are relatively uncommon
in the KITTI dataset and the algorithms have over-fitted.
For F-POINTNET, the detected bicycles may not provide
accurate heights for cyclists, which essentially include rid-
ers and bicycles. Besides, the detected bicycles without rid-
ers are false positives to cyclists, hence leading to a much
Worse accuracy.

We note that, so far no image-based algorithms report
3D results on these two categories on the test set.

E. Additional Qualitative Results
E.1. LiDAR vs. pseudo-LiDAR

We include in Fig. A more qualitative results comparing
the LiDAR and pseudo-LiDAR signals. The pseudo-LiDAR
points are generated by PSMNET*. Similar to Fig. 1 in the
main paper, the two modalities align very well.

Table C: 3D object detection results on the pedestrian and cy-
clist categories on the zest set. We compare pseudo-LiDAR with
PSMNETx (in blue) and LiDAR (in gray). We report APggv /
AP3p at IoU = 0.5 (the standard metric). {: Results on the KITTI
leaderboard.

Method ‘ Input signal ‘ Easy ‘ Moderate ‘ Hard
Pedestrian

AVOD Stereo 27.5/252(20.6/19.0|/19.4/15.3
F-POINTNET Stereo 31.3/29.8(24.0/22.1{21.9/18.8

AVOD TLiDAR + Mono [58.8 /50.8 |51.1/42.8|47.5/40.9
F-POINTNET | fLiDAR + Mono 58.1/51.2|50.2 / 44.9147.2 / 40.2

Cyclist

AVOD Stereo 1357133 9.1/9.1 | 9.1/9.1
F-POINTNET Stereo 41737 | 3.1/28 | 2.8/2.1

AVOD tLiDAR + Mono |68.1/64.0(57.5/52.2|50.8 / 46.6

F-POINTNET | {LiDAR + Mono [75.4/72.0(62.0 / 56.8|54.7 / 50.4

Input ) Pseudo-Lidar (Bird's-eye View

Depth Map

Figure A: Pseudo-LiDAR signal from visual depth esti-
mation. Top-left: a KITTI street scene with super-imposed
bounding boxes around cars obtained with LiDAR (red) and
pseudo-LiDAR ( ). Bottom-left: estimated disparity
map. Right: pseudo-LiDAR (blue) vs. LiDAR ( ) —
the pseudo-LiDAR points align remarkably well with the
LiDAR ones. Best viewed in color (zoom in for details).

E.2. PSMNET vs. PSMNETx

We further compare the pseudo-LiDAR points generated
by PSMNET« and PSMNET. The later is trained on the 200
KITTT stereo images with provided denser ground truths.
As shown in Fig. B, the two models perform fairly simi-
larly for nearby distances. For far-away distances, however,
the pseudo-LiDAR points by PSMNET start to show no-
table deviation from LiDAR signal. This result suggest that
significant further improvements could be possible through
learning disparity on a large training set or even end-to-end
training of the whole pipeline.

E.3. Visualization and failure cases

We provide additional visualization of the prediction re-
sults (cf. Section 4.5 of the main paper). We consider
AVOD with the following point clouds and representations.

e LiDAR
e pseudo-LiDAR (stereo): with PSMNETx [1]
e pseudo-LiDAR (mono): with DORN [3]
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Figure B: PSMNET vs. PSMNET«. Top: a KITTI street scene. Left column: the depth map and pseudo-LiDAR points
(from the bird’s-eye view) by PSMNET, together with a zoomed-in region. Right column: the corresponding results by
PSMNET*. The observer is on the very right side looking to the left. The pseudo-LiDAR points are in blue; LiDAR points

are in
(zoom in for details).

e frontal-view (stereo): with PSMNETx [ 1]

We note that, as DORN [3] applies ordinal regression, the
predicted monocular depth are discretized.

As shown in Fig. C, both LiDAR and pseudo-LiDAR
(stereo or mono) lead to accurate predictions for the nearby
objects. However, pseudo-LiDAR detects far-away objects
less precisely (mislocalization: gray arrows) or even fails
to detect them (missed detection: arrows) due to
in-accurate depth estimates, especially for the monocular
depth. For example, pseudo-LiDAR (mono) completely
misses the four cars in the middle. On the other hand, the
frontal-view (stereo) based approach makes extremely inac-
curate predictions, even for nearby objects.

To analyze the failure cases, we show the precision-recall

. The pseudo-LiDAR points by PSMNET have larger deviation at far-away distances. Best viewed in color

(PR) curves on both 3D object and BEV detection in Fig. D.
The pseudo-LiDAR-based detection has a much lower re-
call compared to the LiDAR-based one, especially for the
moderate and hard cases (i.e., far-away or occluded ob-
jects). That is, missed detections are one major issue that
pseudo-LiDAR-based detection needs to resolve.

We provide another qualitative result for failure cases in
Fig. E. The partially occluded car is missed detected by
AVOD with pseudo-LiDAR (the arrow) even if it
is close to the observer, which likely indicates that stereo
disparity approaches suffer from noisy estimation around
occlusion boundaries.



Figure C: Qualitative comparison and failure cases. We compare AVOD with LiDAR, pseudo-LiDAR (stereo), pseudo-

LiDAR (monocular), and frontal-view (stereo). Ground-truth boxes are in red; predicted boxes in

. The observer in the

pseudo-LiDAR plots (bottom row) is on the very left side looking to the right. The mislocalization cases are indicated by
gray arrows; the missed detection cases are indicated by
extremely inaccurate predictions, even for nearby objects. Best viewed in color.
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Figure D: Precision-recall curves. We compare the precision and recall on AVOD using pseudo-LiDAR with PSMNETx
(top) and using LiDAR (bottom) on the test set. We obtain the curves from the KITTI website. We show both the 3D detection
results (left) and the BEV detection results (right). AVOD using pseudo-LiDAR has a much lower recall, suggesting that
missed detections are one of the major issues of pseudo-LiDAR-based detection.
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Figure E: Qualitative comparison and failure cases. We compare AVOD with LiDAR and pseudo-LiDAR (stereo).
Ground-truth boxes are in red; predicted boxes in . The observer in the pseudo-LiDAR plots (bottom row) is on
the bottom side looking to the top. The pseudo-LiDAR-based detection misses the partially occluded car (the arrow),
which is a hard case. Best viewed in color.



