
Supplementary material for paper submission #6103
Detecting Overfitting of Deep Generative Networks via Latent Recovery

Ryan Webster, Julien Rabin, Loic Simon and Frederic Jurie
Normandie Univ., UNICAEN, ENSICAEN, CNRS Caen, France

GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
ryan.webster@unicaen.fr

Abstract

This document gives additional details and experiments regarding:

• study of local overfitting (Section 1),

• visual results of recovery with various objective loss functions (Section 2),

• failure cases and success rate of recovery (Section 3),

• convergence study of the latent recovery optimization (Section 4).

1



1. Local vs Global overfitting
While GANs geneartors appear to not overfit the training set on the entire image, one may wonder if they do however

overfit training image patches. To investigate this, we take φ of Eq. NNG to be a masking operator on eye and mouth regions
of the image. To first verify this optimization is stable (see Section 4, for more information of stability of optimization), we
recover eyes PGGAN for a number of random initializations in Fig. 1. Finally, we observe the recovery histograms and KS
p-values for patches in Fig. 2.

Target images (after cropping eye on training images)

Recovered images (for different initialization)

Figure 1: Visual results on training images recovery with a masking operator on right eyes (using LBFGS and Euclidean
objective loss, and PGGAN generator). First row: target (real) images yi. First column: initialization. Second column:
optimization after 100 iterations. Recovery is more consistent than global optimization.

(a) Eye patch recovery error. (b) Mouth patch recovery error.

Figure 2: Recover of eye patches (left) and mouth patches (right). The KS p-values for these two graphs are p = 0.0545 and
p = 0.6918 respectively from left to right (see paper).



2. Comparison with Other Loss Functions
We visually compare in Fig. 3 the simple Euclidean loss used in this paper for analyzing overfitting (i.e. φ = Id in

Eq. NNG) with other operators:

• φ = pooling by a factor of 32 (as used in applications for super-resolution);

• φ = various convolutional layers of the VGG-19 (i.e. the perceptual loss previously mentioned in the paper).

While the perceptual loss has been shown to be effective for many synthesis tasks, it appears to hinder optimization in the
case when interacting with a high quality generator G.

Ta
rg

et
s

L
2

po
ol

V
G

G
-1

9
L
2

po
ol

V
G

G
-1

9

Figure 3: Using other loss functions for image recovery. The first row is target images from CelebA-HQ, the next three rows
are recovery from PGGAN network and the final three are from MESCH generator.



3. Optimization Failures
We noted that most networks had the ability to exactly recover generated images. This is shown in Fig. 3, with failure

cases highlighted in red. Interestingly, some networks were not able to recover their generated images at all, for example
Fig. 4b was a PGGAN trained on LSUN Bedroom, which did not verbatim recover any image. We think this may suggest
a more complex latent space for some networks trained on LSUN, with many local minima to equation NNG . Because we
assert that we are finding the nearest neighbors in the space of generated images, we did not analyze networks which could
not recover generated images. It should be noted that some LSUN networks did recover generated images however.

(a) Generated recovery for MESCH on CelebA-HQ. (b) Generated recovery for PGGAN on LSUN Bedroom.

Figure 4: Recovery failure detection with thresholding. First row generated images and second row is recoveries.

3.1. Recovery Success Rate

Disregarding networks which could not recover generated images, some networks had higher failure rates than others. To
determine failure cases numerically, we chose a recovery error threshold of MSE < .1 to signify a plausible recovery for
real images (for generated images a much smaller threshold of MSE < .025 can be used). Table 1 summarizes recovery
rates for a few networks. The MESCH resnets were notably less consistent than other architectures. To study if these failures
were due to bad initialization, we tried simply restarting optimization 10 times per image, and saw the success rate go from
68% to 98% shown in Table 1 as MESCH-10-RESTART. This shows that likely all training and generated images can be
recovered decently well with enough restarts.

Table 1: Success rate for real and generated images using a threshold of MSE¡.1, which corresponds to a plausible recovery.
Failures seem to be due to bad initialization as MESCH-10-RESTART simply restarts optimization 10 times per image and
has a much higher success rate.

train test generated
MESCH 68% 67% 67%

MESCH-10-RESTART 98% 99% 96%
DC-CONV 82% 82% 100%

PGGAN 97% 96% 95%



4. Convergence analysis of latent recovery
In general, optimization was successful and converges nicely for most random initializations. We provide numerical

and visual evidence in this section supporting fast and consistent convergence of LBFGS compared to other optimization
techniques like SGD or Adam.

4.1. Protocol

To demonstrate that the proposed optimization of the latent recovery is stable enough to detect overfitting, the same
protocol is repeated in the following experiments. We used the same 20 random latent codes z∗i to generate images as target
for recovery: yi = G(zi∗) . We also used 20 real images as targets the same as in Section 2 for local recovery. We also
initialized the various optimization algorithms with the same 20 random latent codes zi. We plot the median recovery error
(MRE) for 100 iterations. This curve (in red) is the median of all MSE curves (whatever the objective function is) and is
compared to the 25th and 75th percentile (in blue) of those 400 curves.

4.2. Comparison of optimization algorithm

We first show the average behavior in Fig. 6 the chosen optimization algorithm (LBFGS) to demonstrate that it conver-
gences much faster than SGD and Adam. A green dashed line shows the threshold used to detect if the actual nearest neighbor
is well enough recovered (MRE = 0.024). One can see that only 50 iterations are required in half the case to recover the
target image.

4.3. Comparison of objective loss functions

In Figure 7 are plotted the MRE (median recovery error) when optimizing various objective functions:

• Euclidean distance (L2) as used throughout the paper,

• Manhattan distance (L1), which is often used as an alternative to the Euclidean distance that is more robust to outliers,

• VGG-based perceptual loss.

4.4. Convergence with operator φ

Figure 8 demonstrates convergence under various operators φ.

4.5. Recovery with other generators

Figure 9 displays median recovery error (MRE) when optimizing with LBFGS and SGD for DCGAN and MESCH gen-
erators. Visual results are given for LBFGS in Figures 11 and 12. The MESCH network is more inconsistent, but using 10
random initialization is enough to ensure the recovery of a generated (or real) image with 96% chance.

4.6. Convergence on real images

Figure 10 shows highly consistent recover on real images for the PGGAN network.



Target images (generated with PGGAN)

In
iti

al
iz

at
io

n
(L

B
FG

S)
In

iti
al

iz
at

io
n

(S
G

D
)

Figure 5: Visual comparison of recovery with LBFGS (top) and SGD for the Euclidean loss (see (NNG) optimization problem
in the main paper.). First row: target (generated) images yi = G(zi∗). First column: initialization (G(z(0)i )). Second column:
optimization after 100 iterations (G(z(100)i )). LBFGS gives much better results than SGD that is much slower to converge,
but still needs sometimes some restart (here shown without restarting).



0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

SGD with L2 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ian
 re

co
ve

ry
 er

ro
r (

MR
E)

adam with L2 objective

LBFGS SGD Adam

Figure 6: First row: median recovery error (MRE) curve. Second row: 400 superimposed recovery error curves for 20
images with 20 random initialization. LBFGS (first column) converges faster than SGD or Adam (second and third column
respectively).

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ian
 re

co
ve

ry
 er

ro
r (

MR
E)

LBFGS with L1 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with VGG_perceptual objective

Euclidean distance (L2) Manhattan distance (L1) Perceptual loss (VGG-19)

Figure 7: LBFGS with various objectives for latent recovery for PGGAN.

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

0 20 40 60 80 100
iterations

0.00

0.01

0.02

0.03

0.04

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

φ = identity (resolution of 1024) φ = pooling (resolution of 128) φ = mask (cropping around mouth area)

Figure 8: Using various φ operator for applications (super-resolution, inpainting) has no effect on convergence.

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

SGD with L2 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

0 50 100 150 200 250 300 350 400
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

adam with L2 objective

DCGAN with LBFGS DCGAN with SGD MESCH with LBFGS MESCH with Adam (400 iterations)

Figure 9: Comparing LBFGS with SGD and Adam algorithms for generated image recovery with a DCGAN and a MESCH
network



0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

Target images (from the training set)

In
iti

al
iz

at
io

n

Figure 10: Visual results on real images recovery (training set from celeba-HQ) with LBFGS and Euclidean objective loss,
and PGGAN generator. First row: target (real) images yi. First column: initialization (G(z(0)i )). Second column: optimiza-
tion after 100 iterations (G(z(100)i )).



Target images (generated with DCGAN)

In
iti

al
iz

at
io

n

Figure 11: Visual results on recovery of generated images of a DCGAN network. First row: target (generated) images
yi = G(zi∗). First column: initialization (G(z(0)i )). Second column: optimization with LBFGS and Euclidean loss after 100
iterations (G(z(100)i )).

Target images (generated with MESCH)

In
iti

al
iz

at
io

n

Figure 12: Visual results on recovery of generated images of a MESCH network. First row: target (generated) images
yi = G(zi∗). First column: initialization (G(z(0)i )). Second column: optimization with LBFGS and Euclidean loss after 100
iterations (G(z(100)i )). As previously reported in Section 4, success rate of optimization for MESCH generator is only around
67%, but it can be circumvented easily by restarting with new random initialization or by using Adam optimization.


