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Abstract

In this supplementary material, we provide the proofs to
Theorems 1 and Corollary 1 presented in the main text. We
then present more details on the implementation and the
parameter settings of our method in our experiments. We
also provide more analyses about the proposed MS/HS fu-
sion model. Finally, we show more experimental results for
model verification and more comprehensive performance
demonstrations.

1. Proofs to Theorem 1 and Corollary 1
We now prove Theorem 1 in the main text.

Theorem 1. For any X € RIWXS gng Y € RHWXs jf
rank(X) = r > s and rank(Y') = s, then the following two
statements are equivalent to each other:

(a) There exists an R € RS%s, subject to,

Y = XR. (1)

(b) There exist A € R**5, B ¢ R(—%)x5 gpg Y €
RIWX(r=5) subject to,
X=YA+YB. )

Proof. 1). We first prove that when (b) is satisfied, (a) can
be deduced.

LetQ = [g , and then we have
- .. [A - .
X =[Y,Y] {B} =[Y,Y]Q. 3)

By (3), we can obtain that rank(Q) > rank(X) = r. More-
over, since Q € R"™*5, we have rank(Q) < r. Thus, we
have rank(Q) = 7.

We can now prove that QQ7 is invertible, since
rank (QQT) = rank(Q) = r. Then, by 1| we have

[V, ¥] = [V.¥]QQ" (QQ") ' = XQ" (QQT)(; ;

4321

Set R € RS to be the first s columns of Q' (QQT) _1,
and then it is easy to find that Y = XR, ie., R satisfies
(a).

2). We then prove that when (a) is satisfied, (b) can be
deduced.

Since rank(X) = r, there exist W € REW>" and V ¢
RS*" s.t.,

X=wvT,. 3)

LetU = VTR, and then U € R™*%, and its singular value
decomposition (SVD) is

where 3 € R*# is a diagonal matrix with non-zero diago-
nal elements, 0 is an (7 —s) x (r—s) zero matrix, U € R"*"
and V' € R*** are orthogonal matrices.

Denote U as the last r — s columns in U. Then, we have

U=U >

O} v, (©)

X 0

o 1)

where I is an (r — s) x (r — s) identity matrix. It is easy
to find that (7) is the SVD of [U, U], and all the singular
values are non-zeroes. Therefore, [U7 U ] is invertible.

Let Q = [U7U]71 VT, then Q € R™*%, and we can
obtain

— T
v 0} , )

[U,U}zU[ o I

X=wvT
-w U, 0] U0 V"
= [WVTR,WU]Q
= [y, wuU] Q.
LetY = WU € REWX(r=s) A ¢ Rs*S be the first s

rows in @ and B be the last r — s rows in Q, and then
canberewritenas X = Y A+Y B, i.e., (b)issatisfied. [

Then we prove Corollary 1 in the main text.
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Figure 1. (a) An example of downsampling network with a factor of 4. (b) An example of downsampling network with a factor of 32. (c)
An example of upsampling network with a factor of 32. (d) An example of upsampling network with a factor of 32.

Corollary 1. For any Y € RHWxs 7z ¢ RhwxS C ¢
RIwXHW it rank(Y') = s and rank(Z) = r > s, then the
following two statements are equivalent to each other:

(a) There exist X € REWXS qnd R € RS*s, subject to,

€))

(?) There exist A € RS*5 r > s, B € RU=9%5 gnd
Y € REWX(r—s) subject to,

Y =XR, Z=CX, rank(X) =r.

Z:C(f’A—i—YB). (10)
Proof. 1). We first prove that when (a) is satisfied, (b) can
be deduced.

By Theorem 1, we know that there exist A € RsXS,
BcRr—xSandY € REWX(r=s)) gt is satisfied.
By combining and Z = C X, we can obtain , i.e.,
(b) is satisfied.

2). We then prove that when (b) is satisfied, (a) can be
deduced.

Let X =Y A+ YB, and then we have Z = C X and
rank(X) < r. Moreover, since Z = CX, we can obtain
that rank(X) > rank(Z) = r. Therefore, rank(X) = r.
In addition, by Theorem 1, there exists an R € RS%5 gt.,
Y = X R. Therefore, (a) is satisfied by X = Y A + Y B.

O

2. More details of the network design

In this section, we provide more details on the net-
work design of the downSample, ) (-), upSample, ) (-),
d u

proxNet, ) (-) and resNetg, (-).
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Figure 2. An illustration of exploited ResNet.

Downsampling and upsamling networks. For rel-
atively small scale of factor downsampling and upsam-
pling cases, we simply use a 2D channel-wise convolu-
tion operator and an average pooling operator to perform
downSampleeék) (+) and a 2D transposed convolution to per-

form upSampleoq(Lm (). One can see Fig. (1| (a) and (b) for
easy understanding.

For relatively large-scale of factor downsampling and
upsampling cases, such as those with a factor of 32, the
simple upsampling result with a 2D transposed convolution
can be very blur, which is caused by the fact that the spa-
tial detail information of the image is badly damaged in the
large factor downsampling. To address this problem, we
use several 4 times spatial downsampling/upsampling and
2 times spatial downsampling/upsampling to approach the
large times spatial downsampling/upsampling. Moreover,
in upSample, ) (+), we use a 3-level convolution network
to restore the spatical details. Specifically, we downsam-
ple the HrMS image into a proper size and stuck it with the
upsampling result of each stage, and use it as input of the
3-level convolution network. Fig. |I| (c) and (d) show an ex-
ample of downsampling and upsampling with a factor of 32
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Figure 3. An illustration of how to create the training data when
the HrHS images are unavailable.

for easy understanding.

Proximal network and ResNet. We adopt the deep
residual network (ResNet) [4] to build the proximal network
proxNetQ;k)( ) and adjusting network resNety,_ ( F1g I1s

3. Details of the training data generation

an illustration of the exploited ResNet.

For simulation data and real data where ground truth
HrHS images are available, we can easily use the paired
training data {(V,, Z,), X, }N_; to learn the parameters in
the proposed MHF-net.

Unfortunately, in real world, HrHS images X,s are
sometimes unavailable. In this case, we use the method
proposed in [10] to address this problem, where the Wald
protocol [21] is used to create the training data. Fig. [3]is an
illustration of how to create the training data. We downsam-
ple both HrMS images and LrHS images, so that the orig-
inal LrHS images can be taken as references for the down-
sampled data.

In order to match the sensor properties, we first estimate
the spatial downsampling operator C' with the observed
HrMS images and LrHS images. Specifically, we represent
the downsampling operator as

C()=D@x()),

where D(-) is a fixed downsampling operator, and ¢ €
RP*P is a blur kernel matrix. We then estimate ¢ by solving
the following problem:

(1)

rlr{llgz 12, x3 R = D(¢p @ Y)||7,
o

S.t., Z d)ij = ].,
1.3

where Z,, and )/, are the n*" observed LrHS and HrMS im-
age samples, and R is the to-be-estimated spectral response
of the multispectral sensor. We solve (I2) by alternately
updating R and ¢.

With ¢ fixed, R can be updated by solving the following
sub-problem:

(12)

min } || Z, R — unfolds (D(¢ ® Vo)), (13)
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where unfolds(-) is the unfolding operator along the third
mode and Z,, = unfold3(Z,,). This is a simple least square

optimization with closed form solution:
> (2} unfolds (D (¢ @ V»))) -

-1
R* = (Z zr Zn>

With R fixed, let v = vec(¢), and then ¢ can be updated
by solving the following sub-problem with respect to v:

min ||w — Uwvl|3,
“ 15)
sit, 1T =1,

where vec(-) is the vectorization operator, w is the vector
of all elements in {Z, x3 RT}iLl, which is defined by
w = [wi;wy;...;wy] with w, = vec (2, x3 RT), and
U is the matrix of all patches in {J,,}}_, corresponding to
the downsampling operator D(-). To solve problem (15},
we first prove the following lemma:

Lemma 1. The closed-form solution of (I3) is:

T(UTU) T UTw -
17 (UTU) !

- (U'v)" <UTw
(16)

T T —lpe.T
Proof. Let \* = 2 SZ(I?T)U)Z;U 1), and then it is easy
to find that v* and \* satisfy the Karush-Kuhn-Tucker
(KKT) conditions for convex problem (T3, that is:

1Tv* =1

V(|w — Uv*||2) + N*V(1Tv*) an
=2UTUv* — 20w + X*1

=0.

Therefore, v* and \* are primal and dual optimal, with zero
duality gap [3]]. O

We can thus update ¢ by

¢ = foldz(v*).
In summary, by alternately performing (T4) and (T8), we
can solve the problem (12, and obtain the downsampling
operator. Then we can use the method in Fig. 3]to generate
the training data when HrHS images are unavailable.

(18)

4. Implementation details in network training

In our method, we implement and train our network us-
ing TensorFlowﬂ framework. We use Adam optimizer to

'https://tensorflow.google.cn/


https://tensorflow.google.cn/

train the network for 50000 iterations with a batch size of
10 and a learning rate of 0.0001.

We easily set the trade-off parameters « and 3 in the loss
function as 0.1 and 0.01, respectively, and set the rank pa-
rameter r as min{15, S}, where S is the total band number
of the HrHS image. We initialize the parameter A by solv-
ing

A=(YY)'YTX, (19)
where Y and X are matrices obtained by stacking all the
HrMS and HrHS images in the training data along the spa-
tial dimension. It should be noted that (I9) is a closed form
solution of following problem

mjnHYA—XH%. (20)
Besides, we initialize the filters in the donwsampling net
downSample 000 (-) and upsampling net upSample ;) ()

with p x p matrices whose elements are all -, where p

is the size of the filter. We initialize the other parameters
involved in MHF-net with zero-mean Gaussion distribution
with standard deviation 0.1. Our network can perform con-
sistently well and outperform all other competing methods
throughout all our experiments under such simple settings.

5. More experimental results

In this section, we provide more experimental results and
detail implementations on the three data-set exploited in the
main text.

Comparison methods.
clude: FUSE

The comparison methods in-

1ccv15 7F] GLP-HS [1Tf] SFIM-
HS [BF, GSA [1F, CNMF M-FUSE and
SASFM [ISIﬂ representing the state-of-art traditional meth-
ods. Moreover, to better verify the efficiency of the pro-
posed network structure, we implement a network for
MS/HS fusion for competition, which only uses the ResNet
in the proposed network without using other structures in
MHF-net. This method is simply denoted as ‘ResNet’. In
this method, we set the input as [V, Z,,,], where Z,,, is ob-
tained by interpolating the LrHS image Z (using a bicubic
filter) to the dimension of ) as [9]] did. We set the level
number of ResNet to be 30.

Evaluation measures. Five quantitative picture quality
indices (PQI) are employed for performance evaluation, in-
cluding peak signal-to-noise ratio (PSNR), spectral angle
mapper (SAM) [20], erreur relative globale adimension-
nelle de synthése (ERGAS [12])), structure similarity (SSIM

2http://wei.perso.enseeiht.fr/publications.html
3https://github.com/lanha/SupResPALM

4http://Openremotesensing.net/knowledgebase/
hyperspectral-and-multispectral-data-fusion/

Jhttp://naotoyokoya.com/Download.html
Ghttps://github.com/qw245/BlindFuse
"The code was implemented for comparison
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Figure 4. An illustration of the simulated RGB images of the 12
testing samples in CAVE data.

[14]), feature similarity (FSIM [22]]). SAM calculates the
average angle between spectrum vectors of the target MSI
and the reference one across all spatial positions and ER-
GAS measures fidelity of the restored image based on the
weighted sum of MSE in each band. PSNR, SSIM and
FSIM are conventional PQIs in image processing and com-
puter vision. They evaluate the similarity between the target
image and the reference image based on MSE and struc-
tural consistency, perceptual consistency, respectively. The
smaller ERGAS and SAM are, the better the fusion result
is, while the larger PSNR, SSIM and FSIM are, the closer
the fusion result is to the reference one.

5.1. More results on CAVE data

We first verify the efficiency of the proposed MHF-net
on the CAVE Multispectral Image Database

The database consists of 32 scenes with spatial size of
512 x 512, including full spectral resolution reflectance data
from 400nm to 700nm at 10nm steps (31 bands in total).
We generate the HrMS image (RGB image) by integrat-
ing all the ground truth HrHS images with the same sim-
ulated spectral response R, and generate the LrHS images
via downsampling the groundtruth with a factor of 32 im-
plemented by averaging over 32 x 32 pixel blocks as [2} 6]

To prepare samples for training MHF-net, we randomly
select 20 HS images from CAVE database and extract
96 x 96 overlapped patches from them as reference HrHS
images for training. Then the utilized HrHS, HrMS and
LrHS images are of size 96 x 96 x 31, 96 x 96 x 3 and
3 x 3 x 31, respectively. The remaining 12 HS images of
the database, shown as Fig. E[, are used for validation, where
the original images are treated as ground truth HrHS im-
ages, and the HrMS and LrHS image are generated in the

Shttp://www.cs.columbia.edu/CAVE/databases/
multispectral/
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Table 1. Performance comparison of the competing methods on 12 testing samples in CAVE data set with respect to 5 PQIs.

Data# [ 1 2 3 4 5 6 7 8 9 10 11 12 [ Average
PSNR results of the 12 testing data (Ideal value: 4-c0)

FUSE 3583 30.14 2876  25.17 2956 19.13 2991 37.64 33.69 3245 3431 34.79 30.95
ICCV15 | 36.19 29.44 2923 2648 2959 30.07 41.04 3696 36.06 32.00 3471 3348 32.94
GLP-HS | 3522 30.38 2944 2656 3141 30.80 3884 38.17 3595 3255 3457 3298 33.07
SFIM-HS | 33.54 2934 2534 2683 33.85 3059 36.61 38.00 3443 2930 3195 3257 31.86

GSA 3632 3095 3023  25.87 3443 3191 3955 37.69 3594 3272 3562 34.14 33.78

CNMF 36.43 32.13 2830 26.12 3227 3247 4036 38.68 36.66 32.13 35.12 32.38 33.59
M-FUSE | 35.11 29.62 25.69 2698 34.12 3143 3455 3592 3290 31.61 31.82 3553 32.11
SASFM | 29.61 2473  23.78 1292 2827 20.58 3033 29.64 34.16 2790 3131 25.89 26.59

PNN 35.07 31.03 30.16 2648 3099 3147 3634 3540 35.08 29.11 3471 33.26 3243
3D-CNN | 36.94 3221 3252 2647 3471 33.17 4249 3528 38.84 33.80 3824 3323 34.82
ResNet | 3442 3144 3026 2516 26.81 30.14 38.86 36.08 3753 27.17 3823 30.86 32.25
MHF-net | 38.59 3498 33.76 2843 36.64 34.57 43.70 41.68 41.02 34.77 42.03 36.57 | 37.23
SAM results of the 12 testing data (Ideal value: 0)

FUSE 18.24 1247 16.01 10.68 449 2483 1456 1510 1243 8.00 13.11 6.88 13.07
ICCV15 | 1458 1329 11.68 12.85 247 13.88  7.44 13.66  8.29 5.76 1043 785 10.18
GLP-HS | 17.89 1627 13.40 11.99 2.50 14.07 1028 1544 1121 6.76 1279  6.38 11.58
SFIM-HS | 9.12 8.63 14.43 8.12 1.77 8.07 6.74 8.51 5.66 5.98 9.63 4.95 7.63

GSA 17.00 1595 12.68 14.37 2.63 15.80  9.89 1526  8.41 6.58 1276 7.29 11.56

CNMF 1346 821 10.88 8.26 1.89 7.89 6.25 13.69  6.50 5.52 9.77 6.28 8.22
M-FUSE | 1233 9.12 13.82 9.83 2.05 1095 7.51 10.86  7.29 6.07 11.44 4.59 8.82
SASFM | 14.62 1123 1428 19.10 3.19 1472 10.83 11.02 10.60 6.44 10.39 858 11.25

PNN 19.28 16.74 13.31 14.22 5.52 16.14 15.16 22.18 1594 1196 14.83 1148 14.73
3D-CNN | 1233 1024 10.13 11.17 2.65 9.15 7.99 14.21 9.13 5.52 9.04 5.96 8.96
ResNet 18.10 1521 14.86 19.97 578 27.09 18.16 23.19 1640 11.36 11.77 11.80 16.14
MHF-net | 9.78 7.44 749 8.86 2.29 7.20 7.49 11.13 8.29 5.10 7.18 5.33 7.30
ERGAS results of the 12 testing data (Ideal value: 0)

FUSE 99.53 147.01 179.22 363.59 11432 51342 25582 10299 207.90 72.62 127.69 80.55 | 188.72
ICCV15 | 9476 16298 15991 308.03 101.64 133.37 60.60 111.35 164.33 74.04 119.79 9245 | 131.94
GLP-HS | 106.67 143.66 15345 301.53 8238 120.59 78.82 88.78 149.76 69.82 11996 97.01 126.04
SFIM-HS | 128.04 162.63 258.07 291.01 62.05 125.61 103.53 90.49 178.70 103.38 163.98 101.41 | 147.41

GSA 93.73 136.33 14438 327.03 58.87 108.60 74.08 99.37 163.76 69.07 108.24 86.48 | 122.50

CNMF | 92.62 116.78 17599 322.04 7536 100.61 66.00 8635 138.60 7438 112.21 104.51 | 122.12
M-FUSE | 109.47 158.44 257.78 28387 59.95 111.75 137.32 141.99 239.55 7874 171.98 72.85 | 151.97
SASFM | 208.74 276.10 316.64 1828.96 119.27 403.74 217.30 262.45 193.76 121.77 177.87 225.77 | 362.70

PNN 108.56 137.69 14339 302.33 89.35 112.66 104.17 13042 16436 107.98 117.76 95.53 | 134.52
3D-CNN | 87.53 121.67 110.53 303.66 5723 9473 51.89 13494 110.68 6149 7899 97.09 | 109.20
ResNet | 117.07 133.83 142.78 352.26 14527 138.57 81.24 12145 123.55 134.63 78.54 126.14 | 141.28
MHF-net | 72.06 86.51 96.13 242.24 4494 80.37 44.82 59.59 8493 54.67 50.82 6540 | 81.87
SSIM results of the 12 testing data (Ideal value: 1)

FUSE 0.86 0.83 0.80 0.87 0.84 0.54 0.82 0.86 0.93 0.90 0.91 0.94 0.84
ICCV15 0.91 0.88 0.89 0.87 0.95 0.88 0.97 0.92 0.97 0.92 0.94 0.94 0.92
GLP-HS | 0.88 0.81 0.84 0.85 0.90 0.87 0.94 0.90 0.95 0.91 0.90 0.94 0.89
SFIM-HS | 0.92 0.89 0.79 0.90 0.95 091 0.95 0.96 0.96 0.88 0.92 0.94 091

GSA 0.85 0.75 0.81 0.84 0.95 0.86 0.96 0.87 0.96 0.91 0.90 0.94 0.88

CNMF 0.93 0.92 0.88 0.91 091 0.93 0.97 0.93 0.98 0.89 0.94 0.94 0.93
M-FUSE | 0.90 0.88 0.84 0.89 0.95 0.90 0.96 0.93 0.95 091 0.90 0.96 091
SASFM 0.86 0.76 0.73 0.48 0.81 0.71 0.89 0.93 0.94 0.74 0.87 0.86 0.80

PNN 0.87 0.81 0.89 0.87 0.94 0.89 0.92 0.80 0.92 0.87 0.91 0.92 0.88
3D-CNN | 0.92 0.90 0.92 0.91 0.96 0.95 0.98 0.86 0.97 0.94 0.96 0.96 0.94
ResNet 0.81 0.88 0.88 0.82 0.92 0.73 0.92 0.73 0.91 0.89 0.95 0.93 0.86
MHF-net | 0.96 0.96 0.96 0.92 0.96 0.97 0.98 0.95 0.98 0.95 0.98 0.97 0.96
FSIM results of the 12 testing data (Ideal value: 1)

FUSE 0.96 0.94 0.96 0.88 0.94 0.78 0.92 0.97 0.96 0.96 0.96 0.97 0.93
ICCV15 0.97 0.95 0.95 0.89 0.97 0.95 0.98 0.97 0.98 0.96 0.97 0.98 0.96
GLP-HS | 0.96 0.91 0.96 0.85 0.94 0.94 0.97 0.94 0.96 0.96 0.96 0.95 0.94
SFIM-HS | 0.94 0.91 0.89 0.88 0.96 0.93 0.95 0.96 0.96 0.92 0.93 0.95 0.93

GSA 0.97 0.94 0.96 0.89 0.98 0.96 0.98 0.96 0.98 0.96 0.96 0.97 0.96

CNMF 0.97 0.96 0.95 091 0.97 0.97 0.99 0.97 0.98 0.96 0.97 0.97 0.96
M-FUSE | 0.96 0.94 0.92 0.88 0.97 0.95 0.97 0.96 0.96 0.95 0.93 0.97 0.95
SASFM 0.94 0.92 0.90 0.76 0.94 0.86 0.95 0.96 0.96 0.93 0.94 0.94 0.92

PNN 0.96 0.96 0.96 0.90 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.97 0.96
3D-CNN | 0.97 0.96 0.98 0.91 0.98 0.98 0.99 0.96 0.98 0.98 0.98 0.98 0.97
ResNet 0.97 0.97 0.97 0.90 0.96 0.98 0.98 0.97 0.97 0.96 0.98 0.97 0.97
MHF-net | 0.98 0.98 0.98 0.92 0.97 0.98 0.99 0.98 0.98 0.98 0.99 0.98 0.98
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Figure 5. (a)-(h) The error images of the result obtain by the 10 competing method, relative to the reference data, visualized by relative-
mean-square error along the spectral mode. Two demarcated areas zoomed in 3 times for easy observation.

) 2 A Pl ) & e oA et el 1 b ! . a 21
(h) CNMF (i) M-FUSE (j) SAMF (k) PNN (1) 3D-CNN (m) ResNet (n) MHF-net
Figure 6. (a) The simulated RGB (HrMS) and LrHS (left bottom) image of jelly beans, where we display the 10th (490nm) band of the HS
image. (b) The ground-truth HrHS image. (c)-(1) The results obtained by 10 competing methods, with two demarcated areas zoomed in 4
times for easy observation.

same way as the training samples. 5.2. More results on Chikusei data

Table([T]shows the performance over 12 testing images. It The Chikus.ei dz%ta set [@ﬂ is an airborne HS imaged
is easy to observe that the proposed method can outperform taken over Ch1kpse1, Ibaraki, Japan, on 29 :Iuly 2014. The
other methods with respect to all evaluation measures. data set is of size 2517 x 2335 x 128 with the spectral

range from 0.36 to 1.018. We view the original data as
In the main text, we have shown the 10-th band (490nm) the HrHS image and simulate the HrMS (RGB image) and

of the HS image chart and staffed toy obtained by the com- LrMS (with a factor of 32) image in the similar way as the
peting methods visually. Here, we additionally show in Fig. previous section.

[3] the error images of the result obtain by the 10 compet- We select a 500 x 2210-pixel-size image from the top
ing methods of chart and staffed toy relative to the refer- area of the original data to train MHF-net, and extract
ence data. From the figure, we can easily observe that the 96 x 96 overlapped patches from the training data as ref-
error of proposed method is the smallest among all compet- erence HrHS images for training. The input HrHS, H-MS
ing methods. To further depict the fusion performance of and LrHS samples are of size 96 x 96 x 128, 96 x 96 x 3
the proposed method, we show in Fig. [6] - [0] the fusion re- and 3 x 3 x 128, respectively. Besides, from the remain-
sults of 4 HS images in testing data. From these figures, it ing part of the original image, we extract 16 non-overlap

is easy to observe that the proposed method performs better 448 x 544 x 128 images as testing data. Fig. is an illus-
than other competing ones, in the better recovery of both the
finer-grained textures and the coarser-grained structures. 9http://naotoyokoya.com/Download.html
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Figure 7. (a) The simulated RGB (HrMS) and LrHS (left bottom) image of flowers, where we display the 10th (490nm) band of the HS
image. (b) The ground-truth HrHS image. (c)-(1) The results obtained by 10 competing methods.

(a) RGB & LiHS (b) Ground truth (c) FUSE (d) ICCV2015 (e) GLP-HS (f) SFIM-HS (g) GSA

(i) M-FUSE (i) SAMF (k) PNN (1) 3D-CNN (m) ResNet (n) MHF-net 0

Figure 8. (a) The simulated RGB (HrMS) and LrHS (left bottom) image of fake and real lemons, where we display the 10th (490nm) band
of the HS image. (b) The ground-truth HrHS image. (c)-(1) The results obtained by 10 competing methods.

(h) CNMF

tration of the 16 testing images. channel number of X, is much smaller than X,,, the com-
Since the large number of spectral bands will highly in- putational cost is thus reduced. When performing testing,

crease the computational cost, we use the PCA prior in [9] we reconstruct the output HrHS image by

to reduce the computational cost. Specifically, we first com- .

pute a S x S, matrix V' by performing SVD on the HrHS Xiest = MHFnet(Viest, Ziest, )V (23)

images of the training data:
Table 2| shows the performance over 16 testing images.

X =UxvT (21 From Table[2] it is easy to observe that the proposed method
can outperform other methods with respect to all evaluation
where X € RFWX denotes the 500 x 2210-pixel-size measures.
image HrHS images selected as training data, and U € Fig. [T1]-[I3]shows the composite images of 3 test sample
RHWXSr contains the spectral singular vectors, S, is the  obtained by the competing methods, with bands 70-100-36
reduced band number, which is set as 30 here and X is the as R-G-B. It is easy to observe that the composite images
diagonal matrix of singular values. Then, we compute the obtained by MHF-net is closest to the ground-truth ones,
following HW x S,. matrix, while the results of other methods usually contain obvious
_ incorrect structure or spectral distortions.
X, =X,V, (22)
5.3. More results on World View-2 data
wheren = 1,2,--- N, N is the sample number. after this,

_ ] _\N . In this section, sample images of Roman Colosseum ac-
we train our MHF-net with {(yn7 Z,), Xn} . Since the quired by World View-2 (WV-2) is used in our experi-
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Table 2. Performance comparison of the competing methods on 16 testing samples in Chikusei data set with respect to 5 PQIs.

Data# [ 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15 16 [ Average

PSNR results of the 16 testing data (Ideal value: 4c0)

FUSE | 2034 27.39 2623 2447 2478 2841 2391 2657 29.65 29.61 29.87 1944 2623 3238 2871 27.46| 26.59
ICCV15 | 23.80 27.89 28.13 26.04 2648 29.06 25.14 2832 28.72 29.17 29.67 25.09 28.05 31.71 28.77 2824 | 27.77
GLP-HS | 25.16 2896 28.94 26.19 27.81 30.74 2639 28.75 30.85 3047 30.83 26.07 28.06 32.66 30.02 29.63 | 28.85
SFIM-HS | 24.84 28.64 28.57 26.00 27.54 30.44 2626 27.85 3044 2997 30.32 25.88 28.04 3225 29.72 29.25| 28.50

GSA 22.80 26.53 27.63 2549 2473 27.81 24.80 2837 2844 28.87 28.85 2549 26.51 31.12 27.85 2798 | 27.08

CNMF | 2486 2849 28.66 26.52 26.62 3127 2531 2848 30.53 30.65 31.02 2634 28.51 33.88 29.04 3030 | 28.78
M-FUSE | 22.63 25.33 2525 2291 2483 2724 23.07 22.62 2671 2471 24.84 2223 2525 29.13 25.18 25.60 | 24.85
SASFM | 21.61 26.07 25.92 20.89 2491 28.00 22.18 26.11 2735 27.63 2587 21.72 22.88 2875 2482 2422 | 2493

PNN 25.17 27.89 2734 2519 27.78 28.09 26.39 27.83 2896 2834 26.53 25.61 27.88 2893 27.89 27.63 | 27.34
3D-CNN | 27.00 30.71 30.89 27.97 2932 3220 2823 31.54 3270 3236 31.29 27.46 30.50 34.27 31.41 3029 | 30.51
ResNet |27.03 29.79 29.20 27.02 29.17 2998 2833 30.09 3046 30.66 2893 27.01 30.07 3141 30.62 29.76 | 29.35
MHF-net | 28.70 33.58 32.91 29.58 31.92 34.47 30.88 32.90 34.33 3292 31.83 29.18 32.28 34.92 33.37 32.31| 32.26

SAM results of the 16 testing data (Ideal value: 0)

FUSE |2668 623 773 604 1238 628 827 6.02 526 408 4.00 1447 562 297 437 629 7.92
ICCV15 | 892 415 396 314 551 369 448 342 371 320 326 362 329 255 336 351 3.98
GLP-HS | 7.67 4.06 384 4.07 510 363 495 448 387 343 334 382 358 297 381 405 4.17
SFIM-HS | 796 4.16 3.85 4.08 526 364 499 468 396 341 338 379 359 294 387 403 422

GSA 1193 567 521 396 8.65 488 604 462 479 423 408 432 457 350 496 478 5.39
CNMF | 580 4.15 388 357 515 320 457 407 320 360 344 371 292 261 385 358 3.84
M-FUSE | 10.58 6.61 643 665 885 502 764 691 583 537 544 687 571 407 686 7.05 6.62
SASFM | 1647 7.19 7.66 755 1060 622 10.86 744 748 675 6.03 726 576 504 676 8.16 7.95

PNN 9.15 472 488 399 541 428 522 407 470 415 539 412 436 384 431 417 4.80
3D-CNN | 5.06 3.02 316 265 365 29 338 276 270 268 290 272 253 236 287 284 3.02
ResNet | 653 3.85 391 3.07 414 330 393 315 39 318 380 299 354 293 332 345 3.69
MHF-net | 629 3.13 283 263 344 2.63 333 265 268 245 314 255 255 244 264 288 3.02

ERGAS results of the 16 testing data (Ideal value: 0)

FUSE | 5745 207.5 287.0 293.0 310.6 227.7 311.7 2579 183.7 1882 198.9 506.6 2323 140.6 194.6 2442 | 2724
ICCV15 | 2753 1699 170.7 201.0 203.0 160.4 209.6 160.6 163.1 155.7 163.6 2162 161.8 118.7 154.0 166.6 | 178.1
GLP-HS | 222.1 156.5 1545 2085 167.5 141.1 191.7 1659 1369 143.6 1485 192.6 163.3 1234 148.1 1535 | 163.6
SFIM-HS | 231.5 164.1 157.0 2127 173.0 1435 193.1 1762 142.1 1448 150.5 196.7 167.7 1233 151.0 1584 | 1679

GSA 366.3 2479 2182 2357 309.1 2455 2622 2108 2223 2064 230.5 221.6 2183 178.0 219.7 225.7| 238.6

CNMF | 2325 1739 176.2 199.7 2033 131.8 2309 183.8 144.6 158.6 1640 189.6 1539 106.0 176.8 1489 | 173.4
M-FUSE | 3089 251.1 2854 337.4 2603 229.7 309.0 351.5 231.2 297.8 2804 3458 2451 2015 297.5 279.6 | 282.0
SASFM | 4459 266.2 3355 589.4 3103 2534 4455 3540 284.0 287.8 400.8 4399 334.1 2773 422.1 463.5| 369.3

PNN 213.6 163.2 175.6 2260 159.0 168.5 1854 166.0 148.6 163.2 207.3 200.6 1594 157.0 168.8 1729 | 1772
3D-CNN | 166.3 1189 122.7 163.7 131.8 1129 1492 119.0 1042 1123 1342 1619 119.0 96.6 1202 1329 | 129.1
ResNet | 172.8 135.6 1419 184.0 1345 135.6 152.1 1347 1295 1294 165.6 170.6 131.0 117.8 1289 141.9| 144.1
MHF-net | 146.1 91.5 105.0 139.8 1023 91.1 121.0 105.0 879 103.6 1244 133.6 990 88.6 999 114.1| 109.6

SSIM results of the 16 testing data (Ideal value: 1)

FUSE 064 074 072 071 070 071 074 069 075 075 080 055 072 078 0.77 0.74 0.72
ICCV1ls | 066 079 0.76 075 078 081 078 078 082 081 079 070 084 083 079 0.77 0.78
GLP-HS | 0.79 080 080 0.74 081 081 079 078 0.82 081 08 076 081 0.83 080 0.79 0.80
SFIM-HS | 0.78 0.79 0.80 0.74 080 081 079 077 081 081 081 075 081 083 080 0.79 0.79

GSA 049 0.70 0.66 066 063 072 060 069 074 072 0.63 067 075 078 0.67 0.65 0.67

CNMF | 081 0.77 077 074 077 079 076 072 079 078 079 077 083 083 075 0.8l 0.78
M-FUSE | 0.69 0.66 067 060 0.69 068 066 049 0.67 058 066 055 069 0.69 0.63 0.65 0.64
SASFM | 0.69 0.67 068 057 068 0.67 067 060 066 065 063 058 062 065 058 0.57 0.64

PNN 082 08 08 077 08 080 081 081 08 08 075 080 083 081 081 0.81 0.81
3D-CNN | 088 0.88 087 082 0.8 087 08 08 08 087 08 08 089 088 0.87 0.85 0.87
ResNet | 0.87 0.87 0.87 083 08 08 087 087 087 087 08 086 088 087 088 0.87 0.87
MHF-net | 0.89 090 089 085 091 090 088 089 091 08 087 088 091 089 090 0.88 0.89

FSIM results of the 16 testing data (Ideal value: 1)

FUSE 079 088 085 08 08 08 08 08 08 08 0.8 075 087 090 0.89 0.87 0.86
ICCVls | 079 0.89 0.84 083 087 08 088 087 089 088 088 0.8 089 092 089 0.88 0.87
GLP-HS | 090 091 091 087 092 091 09 09 092 09 09 089 091 091 091 090 0.90
SFIM-HS | 089 091 090 086 091 091 08 0.8 092 09 09 088 091 091 09 090 0.90

GSA 082 083 083 083 08 08 082 084 08 083 079 082 08 085 0.84 0.84 0.83

CNMF | 090 090 09 087 090 092 088 08 092 08 0.8 089 092 093 087 0091 0.90
M-FUSE | 085 086 085 0.84 086 08 08 083 08 083 08 083 08 0.86 0.84 0.85 0.85
SASFM | 084 0.88 085 0.81 08 087 083 084 087 08 084 082 084 08 0.83 0.83 0.84

PNN 091 091 091 089 093 09 091 091 092 091 09 09 091 08 091 091 091
3D-CNN | 093 094 093 091 095 093 093 093 095 093 093 092 094 094 093 092 0.93
ResNet | 093 093 093 091 094 092 093 093 093 093 092 092 094 093 094 093 0.93
MHF-net | 094 096 095 093 096 095 094 095 095 094 093 094 096 094 095 094 0.95
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(a) RGB & LHS (b) Ground truth (c) FUSE (d) ICCV2015 (e) GLP-HS (f) SFIM-HS (g) GSA

(h) CNMF (i) M-FUSE (i) SAMF (k) PNN (1) 3D-CNN (m) ResNet (n) MHF-net 0

Figure 9. (a) The simulated RGB (HrMS) and LrHS (left top) image of fake and real tomatoes, where we display the 10th (490nm) band
of the HS image. (b) The ground-truth HrHS image. (c)-(1) The results obtained by 10 competing methods.

Figure 10. An illustration of the simulated RGB images of the 16 testing samples in Chikusei data.

mentﬂ. This data set contains an HrMS image (RGB color ples by the method shown in Fig. [3] The input HrHS, HrMS
image) of size 1676 x 2632 x 3 and an LrHS image of size and LrHS samples are of size 36 x 36 x 8,36 x 36 x 3 and
419 x 658 x 8, while the HrHS image is unavailable. As 9 x 9 x 8, respectively.

shown in Fig. [T4] We select the top half part of the HrMS o )

(836 x 2632 x 3) and LrHS (209 x 658 x 8) image to train We show in Fig. [IS{T7) the fusion results of the 3 de-
the MHF-net, and exploit the remaining parts of the data marcated area in Fig. [T4] Vl.sual inspection evidently shows
set as testing data. We first extract the training data into Fhat the proposed method gives the best result. By compar-
144 x 144 x 3 overlapped HrMS and 36 x 36 x 3 over- ing the result of ResNet and the proposed method, we can

lapped LrHS patches and then generate the training sam- find that the results of these two deep-learning-based meth-
ods are both clear, while the color and brightness of result

10https : //www . harrisgeospatial .com/Datalmagery/ of the proposed method are evidently closer to the LrHS
SatelliteImagery/HighResolution/WorldView-2.aspx 1mage.
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(g) GSA

(h) CNMF (i) M-FUSE ] G SAMF (k) PNN (1 3D-CNN (m) ResNet (n) MHF-net

Figure 11. (a) The simulated RGB (HrMS) and LrHS (left bottom) images of a test sample in Chikusei data set, where we show the
composite image of the HS image with bands 70-100-36 as R-G-B. (b) The ground-truth HrHS image. (c)-(1) the results obtained by 10
competing methods, with a demarcated area zoomed in 4 times for easy observation.

/

‘ 0 SAMF (k) PNN (1) 3D-CNN m) ResNet

(n) MHF-net

q!':: . -
M-FUSE

®
Figure 12. (a) The simulated RGB (HrMS) and LrHS (left bottom) images of a test sample in Chikusei data set, where we show the
composite image of the HS image with bands 70-100-36 as R-G-B. (b) The ground-truth HrHS image. (c)-(1) the results obtained by 10
competing methods, with a demarcated area zoomed in 4 times for easy observation.

(h) CNMF
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Figure 13. (a) The simulated RGB (HrMS) and LrHS (left bottom) images of a test sample in Chikusei data set, where we show the
composite image of the HS image with bands 70-100-36 as R-G-B. (b) The ground-truth HrHS image. (c)-(1) the results obtained by 10
competing methods, with a demarcated area zoomed in 4 times for easy observation.
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Figure 14. An illustration of RGB image of the World View-2 data. Upper: the training data. Lower: the testing data, where the results of
3 demarcated area will be shown in the later figures.
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(a) HrMS image (b) LrHS image (c) FUSE (d)ICCV15 (e) GLP-HS (f) SFIM-HS (g) GSA

(h) CNMF (i) M-FUSE (j) SAMF (k) PNN (1) 3D-CNN (m) ResNet (n) MHF-net

Figure 15. (a) and (b) the HrMS (RGB) and LrHS images of the red demarcated area in Fig. @ where we show the composite image of
the HS image with bands 5-3-2 as R-G-B. (c)-(1) The results obtained by 10 comparison methods.

(a) HrMS image (b) LrHS image (¢)FUSE (d)ICCV15 (¢) GLP-HS (f) SFIM-HS (g) GSA

(h) CNMF (i) M-FUSE () SAMF (k) PNN (1) 3D-CNN (m) ResNet (n) MHF-net

Figure 16. (a) and (b) the HrMS (RGB) and LrHS images of the blue demarcated area in Fig. @ where we show the composite image of
the HS image with bands 5-3-2 as R-G-B. (c)-(1) The results obtained by 10 comparison methods.

(a) HrMS image (b) LrHS image (¢) FUSE (d)ICCV15 (e) GLP-HS (f) SFIM-HS (g) GSA

(h) CNMF (i) M-FUSE () SAMF (k) PNN (1) 3D-CNN (m) ResNet (n) MHF-net

Figure 17. (a) and (b) the HrMS (RGB) and LrHS images of the green demarcated area in Fig. @ where we show the composite image of
the HS image with bands 5-3-2 as R-G-B. (c)-(1) The results obtained by 10 comparison methods.
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