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Abstract

In this supplementary material, we provide the proofs to
Theorems 1 and Corollary 1 presented in the main text. We
then present more details on the implementation and the
parameter settings of our method in our experiments. We
also provide more analyses about the proposed MS/HS fu-
sion model. Finally, we show more experimental results for
model verification and more comprehensive performance
demonstrations.

1. Proofs to Theorem 1 and Corollary 1
We now prove Theorem 1 in the main text.

Theorem 1. For any X ∈ RHW×S and Ỹ ∈ RHW×s, if
rank(X) = r > s and rank(Ỹ ) = s, then the following two
statements are equivalent to each other:
(a) There exists anR ∈ RS×s, subject to,

Ỹ = XR. (1)

(b) There exist A ∈ Rs×S , B ∈ R(r−s)×S and Ŷ ∈
RHW×(r−s), subject to,

X = Ỹ A+ Ŷ B. (2)

Proof. 1). We first prove that when (b) is satisfied, (a) can
be deduced.

LetQ =

[
A
B

]
, and then we have

X =
[
Ỹ , Ŷ

] [A
B

]
=
[
Ỹ , Ŷ

]
Q. (3)

By (3), we can obtain that rank(Q) ≥ rank(X) = r. More-
over, since Q ∈ Rr×S , we have rank(Q) ≤ r. Thus, we
have rank(Q) = r.

We can now prove that QQT is invertible, since
rank

(
QQT

)
= rank(Q) = r. Then, by (2), we have[

Ỹ , Ŷ
]

=
[
Ỹ , Ŷ

]
QQT

(
QQT

)−1
= XQT

(
QQT

)−1
.

(4)

Set R ∈ RS×s to be the first s columns of QT
(
QQT

)−1
,

and then it is easy to find that Ỹ = XR, i.e., R satisfies
(a).

2). We then prove that when (a) is satisfied, (b) can be
deduced.

Since rank(X) = r, there exist W ∈ RHW×r and V ∈
RS×r, s.t.,

X = WV T . (5)

Let U = V TR, and then U ∈ Rr×s, and its singular value
decomposition (SVD) is

U = Ū

[
Σ
0

]
V̄ T , (6)

where Σ ∈ Rs×s is a diagonal matrix with non-zero diago-
nal elements, 0 is an (r−s)×(r−s) zero matrix, Ū ∈ Rr×r
and V̄ ∈ Rs×s are orthogonal matrices.

Denote Û as the last r− s columns in Ū . Then, we have

[
U , Û

]
= Ū

[
Σ 0
0 I

] [
V̄ 0
0 I

]T
, (7)

where I is an (r − s) × (r − s) identity matrix. It is easy
to find that (7) is the SVD of

[
U , Û

]
, and all the singular

values are non-zeroes. Therefore,
[
U , Û

]
is invertible.

Let Q =
[
U , Û

]−1
V T , then Q ∈ Rr×S , and we can

obtain

X = WV T

= W
[
U , Û

] [
U , Û

]−1
V T

=
[
WV TR,WÛ

]
Q

=
[
Ỹ ,WÛ

]
Q.

(8)

Let Ŷ = WÛ ∈ RHW×(r−s), A ∈ Rs×S be the first s
rows in Q and B be the last r − s rows in Q, and then (8)
can be rewriten asX = Ỹ A+Ŷ B, i.e., (b) is satisfied.

Then we prove Corollary 1 in the main text.
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Figure 1. (a) An example of downsampling network with a factor of 4. (b) An example of downsampling network with a factor of 32. (c)
An example of upsampling network with a factor of 32. (d) An example of upsampling network with a factor of 32.

Corollary 1. For any Ỹ ∈ RHW×s, Z̃ ∈ Rhw×S , C ∈
Rhw×HW , if rank(Ỹ ) = s and rank(Z̃) = r > s, then the
following two statements are equivalent to each other:
(a) There existX ∈ RHW×S andR ∈ RS×s, subject to,

Ỹ = XR, Z̃ = CX, rank(X) = r. (9)

(b) There exist A ∈ Rs×S , r > s, B ∈ R(r−s)×S and
Ŷ ∈ RHW×(r−s), subject to,

Z̃ = C
(
Ỹ A+ Ŷ B

)
. (10)

Proof. 1). We first prove that when (a) is satisfied, (b) can
be deduced.

By Theorem 1, we know that there exist A ∈ Rs×S ,
B ∈ R(r−s)×S and Ŷ ∈ R(HW×(r−s)), s.t., (2) is satisfied.
By combining (2) and Z̃ = CX , we can obtain (10), i.e.,
(b) is satisfied.

2). We then prove that when (b) is satisfied, (a) can be
deduced.

Let X = Ỹ A + Ŷ B, and then we have Z̃ = CX and
rank(X) ≤ r. Moreover, since Z̃ = CX , we can obtain
that rank(X) ≥ rank(Z) = r. Therefore, rank(X) = r.
In addition, by Theorem 1, there exists an R ∈ RS×s, s.t.,
Ỹ = XR. Therefore, (a) is satisfied byX = Ỹ A+ Ŷ B.

2. More details of the network design
In this section, we provide more details on the net-

work design of the downSample
θ
(k)
d

(·), upSample
θ
(k)
u

(·),
proxNet

θ
(k)
p

(·) and resNetθr (·).

+ +

Level 𝟏𝟏

Convolution Batch 
normal

+ +

Level 𝟐𝟐

… + +

Level L

Figure 2. An illustration of exploited ResNet.

Downsampling and upsamling networks. For rel-
atively small scale of factor downsampling and upsam-
pling cases, we simply use a 2D channel-wise convolu-
tion operator and an average pooling operator to perform
downSample

θ
(k)
d

(·) and a 2D transposed convolution to per-
form upSample

θ
(k)
u

(·). One can see Fig. 1 (a) and (b) for
easy understanding.

For relatively large-scale of factor downsampling and
upsampling cases, such as those with a factor of 32, the
simple upsampling result with a 2D transposed convolution
can be very blur, which is caused by the fact that the spa-
tial detail information of the image is badly damaged in the
large factor downsampling. To address this problem, we
use several 4 times spatial downsampling/upsampling and
2 times spatial downsampling/upsampling to approach the
large times spatial downsampling/upsampling. Moreover,
in upSample

θ
(k)
u

(·), we use a 3-level convolution network
to restore the spatical details. Specifically, we downsam-
ple the HrMS image into a proper size and stuck it with the
upsampling result of each stage, and use it as input of the
3-level convolution network. Fig. 1 (c) and (d) show an ex-
ample of downsampling and upsampling with a factor of 32
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Figure 3. An illustration of how to create the training data when
the HrHS images are unavailable.

for easy understanding.
Proximal network and ResNet. We adopt the deep

residual network (ResNet) [4] to build the proximal network
proxNet

θ
(k)
p

(·) and adjusting network resNetθr (·). Fig. 2 is
an illustration of the exploited ResNet.

3. Details of the training data generation
For simulation data and real data where ground truth

HrHS images are available, we can easily use the paired
training data {(Yn,Zn),Xn}Nn=1 to learn the parameters in
the proposed MHF-net.

Unfortunately, in real world, HrHS images Xns are
sometimes unavailable. In this case, we use the method
proposed in [10] to address this problem, where the Wald
protocol [21] is used to create the training data. Fig. 3 is an
illustration of how to create the training data. We downsam-
ple both HrMS images and LrHS images, so that the orig-
inal LrHS images can be taken as references for the down-
sampled data.

In order to match the sensor properties, we first estimate
the spatial downsampling operator C with the observed
HrMS images and LrHS images. Specifically, we represent
the downsampling operator as

C(·) = D(φ⊗ (·)), (11)

where D(·) is a fixed downsampling operator, and φ ∈
Rp×p is a blur kernel matrix. We then estimateφ by solving
the following problem:

min
R,φ

∑
n

‖Zn ×3 R
T −D(φ⊗ Yn)‖2F ,

s.t.,
∑
i,j

φij = 1,
(12)

whereZn and Yn are the nth observed LrHS and HrMS im-
age samples, andR is the to-be-estimated spectral response
of the multispectral sensor. We solve (12) by alternately
updatingR and φ.

With φ fixed,R can be updated by solving the following
sub-problem:

min
R

∑
n

‖ZnR− unfold3(D(φ⊗ Yn))‖2F , (13)

where unfold3(·) is the unfolding operator along the third
mode and Zn = unfold3(Zn). This is a simple least square
optimization with closed form solution:

R+ =

(∑
n

ZTnZn

)−1∑
n

(
ZTn unfold3 (D (φ⊗ Yn))

)
.

(14)
WithR fixed, let v = vec(φ), and thenφ can be updated

by solving the following sub-problem with respect to v:

min
u
‖w −Uv‖22,

s.t.,1Tv = 1,
(15)

where vec(·) is the vectorization operator, w is the vector
of all elements in

{
Zn ×3 R

T
}N
n=1

, which is defined by
w = [w1;w2; . . . ;wN ] with wn = vec

(
Zn ×3 R

T
)
, and

U is the matrix of all patches in {Yn}Nn=1 corresponding to
the downsampling operator D(·). To solve problem (15),
we first prove the following lemma:

Lemma 1. The closed-form solution of (15) is:

v∗ =
(
UTU

)−1

(
UTw −

1T
(
UTU

)−1
UTw − 1

1T (UTU)
−1

1
1

)
.

(16)

Proof. Let λ∗ =
2(1T (UTU)

−1
UTw−1)

1T (UTU)−11
, and then it is easy

to find that v∗ and λ∗ satisfy the Karush-Kuhn-Tucker
(KKT) conditions for convex problem (15), that is:

1Tv∗ = 1

∇(‖w −Uv∗‖22) + λ∗∇(1Tv∗)

= 2UTUv∗ − 2UTw + λ∗1

= 0.

(17)

Therefore, v∗ and λ∗ are primal and dual optimal, with zero
duality gap [3].

We can thus update φ by

φ+ = fold3(v∗). (18)

In summary, by alternately performing (14) and (18), we
can solve the problem (12), and obtain the downsampling
operator. Then we can use the method in Fig. 3 to generate
the training data when HrHS images are unavailable.

4. Implementation details in network training
In our method, we implement and train our network us-

ing TensorFlow1 framework. We use Adam optimizer to

1https://tensorflow.google.cn/

4323

https://tensorflow.google.cn/


train the network for 50000 iterations with a batch size of
10 and a learning rate of 0.0001.

We easily set the trade-off parameters α and β in the loss
function as 0.1 and 0.01, respectively, and set the rank pa-
rameter r as min{15, S}, where S is the total band number
of the HrHS image. We initialize the parameter A by solv-
ing

A = (Ȳ Ȳ )−1Ȳ T X̄, (19)

where Ȳ and X̄ are matrices obtained by stacking all the
HrMS and HrHS images in the training data along the spa-
tial dimension. It should be noted that (19) is a closed form
solution of following problem

min
A
‖Ȳ A− X̄‖2F . (20)

Besides, we initialize the filters in the donwsampling net
downSample

θ
(k)
d

(·) and upsampling net upSample
θ
(k)
u

(·)
with p × p matrices whose elements are all 1

p2 , where p
is the size of the filter. We initialize the other parameters
involved in MHF-net with zero-mean Gaussion distribution
with standard deviation 0.1. Our network can perform con-
sistently well and outperform all other competing methods
throughout all our experiments under such simple settings.

5. More experimental results
In this section, we provide more experimental results and

detail implementations on the three data-set exploited in the
main text.

Comparison methods. The comparison methods in-
clude: FUSE [16]2, ICCV15 [7]3, GLP-HS [11]4, SFIM-
HS [8]4, GSA [1]4, CNMF [19]5, M-FUSE [15]6 and
SASFM [5]7, representing the state-of-art traditional meth-
ods. Moreover, to better verify the efficiency of the pro-
posed network structure, we implement a network for
MS/HS fusion for competition, which only uses the ResNet
in the proposed network without using other structures in
MHF-net. This method is simply denoted as ‘ResNet’. In
this method, we set the input as [Y,Zup], where Zup is ob-
tained by interpolating the LrHS image Z (using a bicubic
filter) to the dimension of Y as [9] did. We set the level
number of ResNet to be 30.

Evaluation measures. Five quantitative picture quality
indices (PQI) are employed for performance evaluation, in-
cluding peak signal-to-noise ratio (PSNR), spectral angle
mapper (SAM) [20], erreur relative globale adimension-
nelle de synthèse (ERGAS [12]), structure similarity (SSIM

2http://wei.perso.enseeiht.fr/publications.html
3https://github.com/lanha/SupResPALM
4http://openremotesensing.net/knowledgebase/

hyperspectral-and-multispectral-data-fusion/
5http://naotoyokoya.com/Download.html
6https://github.com/qw245/BlindFuse
7The code was implemented for comparison

Figure 4. An illustration of the simulated RGB images of the 12
testing samples in CAVE data.

[14]), feature similarity (FSIM [22]). SAM calculates the
average angle between spectrum vectors of the target MSI
and the reference one across all spatial positions and ER-
GAS measures fidelity of the restored image based on the
weighted sum of MSE in each band. PSNR, SSIM and
FSIM are conventional PQIs in image processing and com-
puter vision. They evaluate the similarity between the target
image and the reference image based on MSE and struc-
tural consistency, perceptual consistency, respectively. The
smaller ERGAS and SAM are, the better the fusion result
is, while the larger PSNR, SSIM and FSIM are, the closer
the fusion result is to the reference one.

5.1. More results on CAVE data

We first verify the efficiency of the proposed MHF-net
on the CAVE Multispectral Image Database [17]8.

The database consists of 32 scenes with spatial size of
512×512, including full spectral resolution reflectance data
from 400nm to 700nm at 10nm steps (31 bands in total).
We generate the HrMS image (RGB image) by integrat-
ing all the ground truth HrHS images with the same sim-
ulated spectral response R, and generate the LrHS images
via downsampling the groundtruth with a factor of 32 im-
plemented by averaging over 32× 32 pixel blocks as [2, 6].

To prepare samples for training MHF-net, we randomly
select 20 HS images from CAVE database and extract
96 × 96 overlapped patches from them as reference HrHS
images for training. Then the utilized HrHS, HrMS and
LrHS images are of size 96× 96× 31, 96× 96× 3 and
3× 3× 31, respectively. The remaining 12 HS images of
the database, shown as Fig. 4, are used for validation, where
the original images are treated as ground truth HrHS im-
ages, and the HrMS and LrHS image are generated in the

8http://www.cs.columbia.edu/CAVE/databases/
multispectral/
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Table 1. Performance comparison of the competing methods on 12 testing samples in CAVE data set with respect to 5 PQIs.

Data # 1 2 3 4 5 6 7 8 9 10 11 12 Average
PSNR results of the 12 testing data (Ideal value: +∞)

FUSE 35.83 30.14 28.76 25.17 29.56 19.13 29.91 37.64 33.69 32.45 34.31 34.79 30.95
ICCV15 36.19 29.44 29.23 26.48 29.59 30.07 41.04 36.96 36.06 32.00 34.71 33.48 32.94
GLP-HS 35.22 30.38 29.44 26.56 31.41 30.80 38.84 38.17 35.95 32.55 34.57 32.98 33.07
SFIM-HS 33.54 29.34 25.34 26.83 33.85 30.59 36.61 38.00 34.43 29.30 31.95 32.57 31.86

GSA 36.32 30.95 30.23 25.87 34.43 31.91 39.55 37.69 35.94 32.72 35.62 34.14 33.78
CNMF 36.43 32.13 28.30 26.12 32.27 32.47 40.36 38.68 36.66 32.13 35.12 32.38 33.59

M-FUSE 35.11 29.62 25.69 26.98 34.12 31.43 34.55 35.92 32.90 31.61 31.82 35.53 32.11
SASFM 29.61 24.73 23.78 12.92 28.27 20.58 30.33 29.64 34.16 27.90 31.31 25.89 26.59

PNN 35.07 31.03 30.16 26.48 30.99 31.47 36.34 35.40 35.08 29.11 34.71 33.26 32.43
3D-CNN 36.94 32.21 32.52 26.47 34.71 33.17 42.49 35.28 38.84 33.80 38.24 33.23 34.82
ResNet 34.42 31.44 30.26 25.16 26.81 30.14 38.86 36.08 37.53 27.17 38.23 30.86 32.25

MHF-net 38.59 34.98 33.76 28.43 36.64 34.57 43.70 41.68 41.02 34.77 42.03 36.57 37.23
SAM results of the 12 testing data (Ideal value: 0)

FUSE 18.24 12.47 16.01 10.68 4.49 24.83 14.56 15.10 12.43 8.00 13.11 6.88 13.07
ICCV15 14.58 13.29 11.68 12.85 2.47 13.88 7.44 13.66 8.29 5.76 10.43 7.85 10.18
GLP-HS 17.89 16.27 13.40 11.99 2.50 14.07 10.28 15.44 11.21 6.76 12.79 6.38 11.58
SFIM-HS 9.12 8.63 14.43 8.12 1.77 8.07 6.74 8.51 5.66 5.98 9.63 4.95 7.63

GSA 17.00 15.95 12.68 14.37 2.63 15.89 9.89 15.26 8.41 6.58 12.76 7.29 11.56
CNMF 13.46 8.21 10.88 8.26 1.89 7.89 6.25 13.69 6.50 5.52 9.77 6.28 8.22

M-FUSE 12.33 9.12 13.82 9.83 2.05 10.95 7.51 10.86 7.29 6.07 11.44 4.59 8.82
SASFM 14.62 11.23 14.28 19.10 3.19 14.72 10.83 11.02 10.60 6.44 10.39 8.58 11.25

PNN 19.28 16.74 13.31 14.22 5.52 16.14 15.16 22.18 15.94 11.96 14.83 11.48 14.73
3D-CNN 12.33 10.24 10.13 11.17 2.65 9.15 7.99 14.21 9.13 5.52 9.04 5.96 8.96
ResNet 18.10 15.21 14.86 19.97 5.78 27.09 18.16 23.19 16.40 11.36 11.77 11.80 16.14

MHF-net 9.78 7.44 7.49 8.86 2.29 7.20 7.49 11.13 8.29 5.10 7.18 5.33 7.30
ERGAS results of the 12 testing data (Ideal value: 0)

FUSE 99.53 147.01 179.22 363.59 114.32 513.42 255.82 102.99 207.90 72.62 127.69 80.55 188.72
ICCV15 94.76 162.98 159.91 308.03 101.64 133.37 60.60 111.35 164.33 74.04 119.79 92.45 131.94
GLP-HS 106.67 143.66 153.45 301.53 82.38 120.59 78.82 88.78 149.76 69.82 119.96 97.01 126.04
SFIM-HS 128.04 162.63 258.07 291.01 62.05 125.61 103.53 90.49 178.70 103.38 163.98 101.41 147.41

GSA 93.73 136.33 144.38 327.03 58.87 108.60 74.08 99.37 163.76 69.07 108.24 86.48 122.50
CNMF 92.62 116.78 175.99 322.04 75.36 100.61 66.00 86.35 138.60 74.38 112.21 104.51 122.12

M-FUSE 109.47 158.44 257.78 283.87 59.95 111.75 137.32 141.99 239.55 78.74 171.98 72.85 151.97
SASFM 208.74 276.10 316.64 1828.96 119.27 403.74 217.30 262.45 193.76 121.77 177.87 225.77 362.70

PNN 108.56 137.69 143.39 302.33 89.35 112.66 104.17 130.42 164.36 107.98 117.76 95.53 134.52
3D-CNN 87.53 121.67 110.53 303.66 57.23 94.73 51.89 134.94 110.68 61.49 78.99 97.09 109.20
ResNet 117.07 133.83 142.78 352.26 145.27 138.57 81.24 121.45 123.55 134.63 78.54 126.14 141.28

MHF-net 72.06 86.51 96.13 242.24 44.94 80.37 44.82 59.59 84.93 54.67 50.82 65.40 81.87
SSIM results of the 12 testing data (Ideal value: 1)

FUSE 0.86 0.83 0.80 0.87 0.84 0.54 0.82 0.86 0.93 0.90 0.91 0.94 0.84
ICCV15 0.91 0.88 0.89 0.87 0.95 0.88 0.97 0.92 0.97 0.92 0.94 0.94 0.92
GLP-HS 0.88 0.81 0.84 0.85 0.90 0.87 0.94 0.90 0.95 0.91 0.90 0.94 0.89
SFIM-HS 0.92 0.89 0.79 0.90 0.95 0.91 0.95 0.96 0.96 0.88 0.92 0.94 0.91

GSA 0.85 0.75 0.81 0.84 0.95 0.86 0.96 0.87 0.96 0.91 0.90 0.94 0.88
CNMF 0.93 0.92 0.88 0.91 0.91 0.93 0.97 0.93 0.98 0.89 0.94 0.94 0.93

M-FUSE 0.90 0.88 0.84 0.89 0.95 0.90 0.96 0.93 0.95 0.91 0.90 0.96 0.91
SASFM 0.86 0.76 0.73 0.48 0.81 0.71 0.89 0.93 0.94 0.74 0.87 0.86 0.80

PNN 0.87 0.81 0.89 0.87 0.94 0.89 0.92 0.80 0.92 0.87 0.91 0.92 0.88
3D-CNN 0.92 0.90 0.92 0.91 0.96 0.95 0.98 0.86 0.97 0.94 0.96 0.96 0.94
ResNet 0.81 0.88 0.88 0.82 0.92 0.73 0.92 0.73 0.91 0.89 0.95 0.93 0.86

MHF-net 0.96 0.96 0.96 0.92 0.96 0.97 0.98 0.95 0.98 0.95 0.98 0.97 0.96
FSIM results of the 12 testing data (Ideal value: 1)

FUSE 0.96 0.94 0.96 0.88 0.94 0.78 0.92 0.97 0.96 0.96 0.96 0.97 0.93
ICCV15 0.97 0.95 0.95 0.89 0.97 0.95 0.98 0.97 0.98 0.96 0.97 0.98 0.96
GLP-HS 0.96 0.91 0.96 0.85 0.94 0.94 0.97 0.94 0.96 0.96 0.96 0.95 0.94
SFIM-HS 0.94 0.91 0.89 0.88 0.96 0.93 0.95 0.96 0.96 0.92 0.93 0.95 0.93

GSA 0.97 0.94 0.96 0.89 0.98 0.96 0.98 0.96 0.98 0.96 0.96 0.97 0.96
CNMF 0.97 0.96 0.95 0.91 0.97 0.97 0.99 0.97 0.98 0.96 0.97 0.97 0.96

M-FUSE 0.96 0.94 0.92 0.88 0.97 0.95 0.97 0.96 0.96 0.95 0.93 0.97 0.95
SASFM 0.94 0.92 0.90 0.76 0.94 0.86 0.95 0.96 0.96 0.93 0.94 0.94 0.92

PNN 0.96 0.96 0.96 0.90 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.97 0.96
3D-CNN 0.97 0.96 0.98 0.91 0.98 0.98 0.99 0.96 0.98 0.98 0.98 0.98 0.97
ResNet 0.97 0.97 0.97 0.90 0.96 0.98 0.98 0.97 0.97 0.96 0.98 0.97 0.97

MHF-net 0.98 0.98 0.98 0.92 0.97 0.98 0.99 0.98 0.98 0.98 0.99 0.98 0.98
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(l) ResNet(h) SAMF(g) M-FUSE

(f) CNMF(e) GSA(a) FUSE (b) ICCV15 (c) GLP-HS (d) SFIM-HS

0

2

(j) 3D-CNN(i) PNN (j) MHF-net

Figure 5. (a)-(h) The error images of the result obtain by the 10 competing method, relative to the reference data, visualized by relative-
mean-square error along the spectral mode. Two demarcated areas zoomed in 3 times for easy observation.

(n) MHF-net(m) ResNet(j) SAMF(i) M-FUSE(h) CNMF

(g) GSA(a) RGB & LrHS (b) Ground truth (c) FUSE (d) ICCV2015 (e) GLP-HS (f) SFIM-HS

0

1

(l) 3D-CNN(k) PNN

Figure 6. (a) The simulated RGB (HrMS) and LrHS (left bottom) image of jelly beans, where we display the 10th (490nm) band of the HS
image. (b) The ground-truth HrHS image. (c)-(l) The results obtained by 10 competing methods, with two demarcated areas zoomed in 4
times for easy observation.

same way as the training samples.

Table 1 shows the performance over 12 testing images. It
is easy to observe that the proposed method can outperform
other methods with respect to all evaluation measures.

In the main text, we have shown the 10-th band (490nm)
of the HS image chart and staffed toy obtained by the com-
peting methods visually. Here, we additionally show in Fig.
5 the error images of the result obtain by the 10 compet-
ing methods of chart and staffed toy relative to the refer-
ence data. From the figure, we can easily observe that the
error of proposed method is the smallest among all compet-
ing methods. To further depict the fusion performance of
the proposed method, we show in Fig. 6 - 9 the fusion re-
sults of 4 HS images in testing data. From these figures, it
is easy to observe that the proposed method performs better
than other competing ones, in the better recovery of both the
finer-grained textures and the coarser-grained structures.

5.2. More results on Chikusei data

The Chikusei data set [18]9 is an airborne HS imaged
taken over Chikusei, Ibaraki, Japan, on 29 July 2014. The
data set is of size 2517 × 2335 × 128 with the spectral
range from 0.36 to 1.018. We view the original data as
the HrHS image and simulate the HrMS (RGB image) and
LrMS (with a factor of 32) image in the similar way as the
previous section.

We select a 500 × 2210-pixel-size image from the top
area of the original data to train MHF-net, and extract
96 × 96 overlapped patches from the training data as ref-
erence HrHS images for training. The input HrHS, HrMS
and LrHS samples are of size 96× 96× 128, 96× 96× 3
and 3× 3× 128, respectively. Besides, from the remain-
ing part of the original image, we extract 16 non-overlap
448× 544× 128 images as testing data. Fig. 10 is an illus-

9http://naotoyokoya.com/Download.html

4326

http://naotoyokoya.com/Download.html


(n) MHF-net(m) ResNet(j) SAMF(i) M-FUSE(h) CNMF

(g) GSA(a) RGB & LrHS (b) Ground truth (c) FUSE (d) ICCV2015 (e) GLP-HS (f) SFIM-HS

0

1

(l) 3D-CNN(k) PNN

Figure 7. (a) The simulated RGB (HrMS) and LrHS (left bottom) image of flowers, where we display the 10th (490nm) band of the HS
image. (b) The ground-truth HrHS image. (c)-(l) The results obtained by 10 competing methods.

(n) MHF-net(m) ResNet(j) SAMF(i) M-FUSE(h) CNMF

(g) GSA(a) RGB & LrHS (b) Ground truth (c) FUSE (d) ICCV2015 (e) GLP-HS (f) SFIM-HS

0

1

(l) 3D-CNN(k) PNN

Figure 8. (a) The simulated RGB (HrMS) and LrHS (left bottom) image of fake and real lemons, where we display the 10th (490nm) band
of the HS image. (b) The ground-truth HrHS image. (c)-(l) The results obtained by 10 competing methods.

tration of the 16 testing images.
Since the large number of spectral bands will highly in-

crease the computational cost, we use the PCA prior in [9]
to reduce the computational cost. Specifically, we first com-
pute a S × Sr matrix V by performing SVD on the HrHS
images of the training data:

X̃ = UΣV T (21)

where X̃ ∈ RHW× denotes the 500 × 2210-pixel-size
image HrHS images selected as training data, and U ∈
RHW×Sr contains the spectral singular vectors, Sr is the
reduced band number, which is set as 30 here and Σ is the
diagonal matrix of singular values. Then, we compute the
following HW × Sr matrix,

X̃n = XnV , (22)

where n = 1, 2, · · · , N , N is the sample number. after this,

we train our MHF-net with
{

(Yn,Zn), X̃n
}N
n=1

. Since the

channel number of X̃n is much smaller than Xn, the com-
putational cost is thus reduced. When performing testing,
we reconstruct the output HrHS image by

X̂test = MHFnet(Ytest,Ztest,Θ)V T . (23)

Table 2 shows the performance over 16 testing images.
From Table 2, it is easy to observe that the proposed method
can outperform other methods with respect to all evaluation
measures.

Fig. 11 - 13 shows the composite images of 3 test sample
obtained by the competing methods, with bands 70-100-36
as R-G-B. It is easy to observe that the composite images
obtained by MHF-net is closest to the ground-truth ones,
while the results of other methods usually contain obvious
incorrect structure or spectral distortions.

5.3. More results on World View-2 data

In this section, sample images of Roman Colosseum ac-
quired by World View-2 (WV-2) is used in our experi-
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Table 2. Performance comparison of the competing methods on 16 testing samples in Chikusei data set with respect to 5 PQIs.

Data # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Average
PSNR results of the 16 testing data (Ideal value: +∞)

FUSE 20.34 27.39 26.23 24.47 24.78 28.41 23.91 26.57 29.65 29.61 29.87 19.44 26.23 32.38 28.71 27.46 26.59
ICCV15 23.80 27.89 28.13 26.04 26.48 29.06 25.14 28.32 28.72 29.17 29.67 25.09 28.05 31.71 28.77 28.24 27.77
GLP-HS 25.16 28.96 28.94 26.19 27.81 30.74 26.39 28.75 30.85 30.47 30.83 26.07 28.06 32.66 30.02 29.63 28.85
SFIM-HS 24.84 28.64 28.57 26.00 27.54 30.44 26.26 27.85 30.44 29.97 30.32 25.88 28.04 32.25 29.72 29.25 28.50

GSA 22.80 26.53 27.63 25.49 24.73 27.81 24.80 28.37 28.44 28.87 28.85 25.49 26.51 31.12 27.85 27.98 27.08
CNMF 24.86 28.49 28.66 26.52 26.62 31.27 25.31 28.48 30.53 30.65 31.02 26.34 28.51 33.88 29.04 30.30 28.78

M-FUSE 22.63 25.33 25.25 22.91 24.83 27.24 23.07 22.62 26.71 24.71 24.84 22.23 25.25 29.13 25.18 25.60 24.85
SASFM 21.61 26.07 25.92 20.89 24.91 28.00 22.18 26.11 27.35 27.63 25.87 21.72 22.88 28.75 24.82 24.22 24.93

PNN 25.17 27.89 27.34 25.19 27.78 28.09 26.39 27.83 28.96 28.34 26.53 25.61 27.88 28.93 27.89 27.63 27.34
3D-CNN 27.00 30.71 30.89 27.97 29.32 32.20 28.23 31.54 32.70 32.36 31.29 27.46 30.50 34.27 31.41 30.29 30.51
ResNet 27.03 29.79 29.20 27.02 29.17 29.98 28.33 30.09 30.46 30.66 28.93 27.01 30.07 31.41 30.62 29.76 29.35

MHF-net 28.70 33.58 32.91 29.58 31.92 34.47 30.88 32.90 34.33 32.92 31.83 29.18 32.28 34.92 33.37 32.31 32.26
SAM results of the 16 testing data (Ideal value: 0)

FUSE 26.68 6.23 7.73 6.04 12.38 6.28 8.27 6.02 5.26 4.08 4.00 14.47 5.62 2.97 4.37 6.29 7.92
ICCV15 8.92 4.15 3.96 3.14 5.51 3.69 4.48 3.42 3.71 3.20 3.26 3.62 3.29 2.55 3.36 3.51 3.98
GLP-HS 7.67 4.06 3.84 4.07 5.10 3.63 4.95 4.48 3.87 3.43 3.34 3.82 3.58 2.97 3.81 4.05 4.17
SFIM-HS 7.96 4.16 3.85 4.08 5.26 3.64 4.99 4.68 3.96 3.41 3.38 3.79 3.59 2.94 3.87 4.03 4.22

GSA 11.93 5.67 5.21 3.96 8.65 4.88 6.04 4.62 4.79 4.23 4.08 4.32 4.57 3.50 4.96 4.78 5.39
CNMF 5.89 4.15 3.88 3.57 5.15 3.20 4.57 4.07 3.20 3.60 3.44 3.71 2.92 2.61 3.85 3.58 3.84

M-FUSE 10.58 6.61 6.43 6.65 8.85 5.02 7.64 6.91 5.83 5.37 5.44 6.87 5.71 4.07 6.86 7.05 6.62
SASFM 16.47 7.19 7.66 7.55 10.60 6.22 10.86 7.44 7.48 6.75 6.03 7.26 5.76 5.04 6.76 8.16 7.95

PNN 9.15 4.72 4.88 3.99 5.41 4.28 5.22 4.07 4.70 4.15 5.39 4.12 4.36 3.84 4.31 4.17 4.80
3D-CNN 5.06 3.02 3.16 2.65 3.65 2.90 3.38 2.76 2.70 2.68 2.90 2.72 2.53 2.36 2.87 2.84 3.02
ResNet 6.53 3.85 3.91 3.07 4.14 3.30 3.93 3.15 3.90 3.18 3.80 2.99 3.54 2.93 3.32 3.45 3.69

MHF-net 6.29 3.13 2.83 2.63 3.44 2.63 3.33 2.65 2.68 2.45 3.14 2.55 2.55 2.44 2.64 2.88 3.02
ERGAS results of the 16 testing data (Ideal value: 0)

FUSE 574.5 207.5 287.0 293.0 310.6 227.7 311.7 257.9 183.7 188.2 198.9 506.6 232.3 140.6 194.6 244.2 272.4
ICCV15 275.3 169.9 170.7 201.0 203.0 160.4 209.6 160.6 163.1 155.7 163.6 216.2 161.8 118.7 154.0 166.6 178.1
GLP-HS 222.1 156.5 154.5 208.5 167.5 141.1 191.7 165.9 136.9 143.6 148.5 192.6 163.3 123.4 148.1 153.5 163.6
SFIM-HS 231.5 164.1 157.0 212.7 173.0 143.5 193.1 176.2 142.1 144.8 150.5 196.7 167.7 123.3 151.0 158.4 167.9

GSA 366.3 247.9 218.2 235.7 309.1 245.5 262.2 210.8 222.3 206.4 230.5 221.6 218.3 178.0 219.7 225.7 238.6
CNMF 232.5 173.9 176.2 199.7 203.3 131.8 230.9 183.8 144.6 158.6 164.0 189.6 153.9 106.0 176.8 148.9 173.4

M-FUSE 308.9 251.1 285.4 337.4 260.3 229.7 309.0 351.5 231.2 297.8 280.4 345.8 245.1 201.5 297.5 279.6 282.0
SASFM 445.9 266.2 335.5 589.4 310.3 253.4 445.5 354.0 284.0 287.8 400.8 439.9 334.1 277.3 422.1 463.5 369.3

PNN 213.6 163.2 175.6 226.0 159.0 168.5 185.4 166.0 148.6 163.2 207.3 200.6 159.4 157.0 168.8 172.9 177.2
3D-CNN 166.3 118.9 122.7 163.7 131.8 112.9 149.2 119.0 104.2 112.3 134.2 161.9 119.0 96.6 120.2 132.9 129.1
ResNet 172.8 135.6 141.9 184.0 134.5 135.6 152.1 134.7 129.5 129.4 165.6 170.6 131.0 117.8 128.9 141.9 144.1

MHF-net 146.1 91.5 105.0 139.8 102.3 91.1 121.0 105.0 87.9 103.6 124.4 133.6 99.0 88.6 99.9 114.1 109.6
SSIM results of the 16 testing data (Ideal value: 1)

FUSE 0.64 0.74 0.72 0.71 0.70 0.71 0.74 0.69 0.75 0.75 0.80 0.55 0.72 0.78 0.77 0.74 0.72
ICCV15 0.66 0.79 0.76 0.75 0.78 0.81 0.78 0.78 0.82 0.81 0.79 0.70 0.84 0.83 0.79 0.77 0.78
GLP-HS 0.79 0.80 0.80 0.74 0.81 0.81 0.79 0.78 0.82 0.81 0.81 0.76 0.81 0.83 0.80 0.79 0.80
SFIM-HS 0.78 0.79 0.80 0.74 0.80 0.81 0.79 0.77 0.81 0.81 0.81 0.75 0.81 0.83 0.80 0.79 0.79

GSA 0.49 0.70 0.66 0.66 0.63 0.72 0.60 0.69 0.74 0.72 0.63 0.67 0.75 0.78 0.67 0.65 0.67
CNMF 0.81 0.77 0.77 0.74 0.77 0.79 0.76 0.72 0.79 0.78 0.79 0.77 0.83 0.83 0.75 0.81 0.78

M-FUSE 0.69 0.66 0.67 0.60 0.69 0.68 0.66 0.49 0.67 0.58 0.66 0.55 0.69 0.69 0.63 0.65 0.64
SASFM 0.69 0.67 0.68 0.57 0.68 0.67 0.67 0.60 0.66 0.65 0.63 0.58 0.62 0.65 0.58 0.57 0.64

PNN 0.82 0.82 0.80 0.77 0.83 0.80 0.81 0.81 0.83 0.81 0.75 0.80 0.83 0.81 0.81 0.81 0.81
3D-CNN 0.88 0.88 0.87 0.82 0.89 0.87 0.86 0.86 0.89 0.87 0.85 0.85 0.89 0.88 0.87 0.85 0.87
ResNet 0.87 0.87 0.87 0.83 0.89 0.85 0.87 0.87 0.87 0.87 0.84 0.86 0.88 0.87 0.88 0.87 0.87

MHF-net 0.89 0.90 0.89 0.85 0.91 0.90 0.88 0.89 0.91 0.89 0.87 0.88 0.91 0.89 0.90 0.88 0.89
FSIM results of the 16 testing data (Ideal value: 1)

FUSE 0.79 0.88 0.85 0.86 0.85 0.86 0.85 0.86 0.89 0.89 0.89 0.75 0.87 0.90 0.89 0.87 0.86
ICCV15 0.79 0.89 0.84 0.83 0.87 0.89 0.88 0.87 0.89 0.88 0.88 0.85 0.89 0.92 0.89 0.88 0.87
GLP-HS 0.90 0.91 0.91 0.87 0.92 0.91 0.90 0.90 0.92 0.90 0.90 0.89 0.91 0.91 0.91 0.90 0.90
SFIM-HS 0.89 0.91 0.90 0.86 0.91 0.91 0.89 0.89 0.92 0.90 0.90 0.88 0.91 0.91 0.90 0.90 0.90

GSA 0.82 0.83 0.83 0.83 0.85 0.85 0.82 0.84 0.86 0.83 0.79 0.82 0.86 0.85 0.84 0.84 0.83
CNMF 0.90 0.90 0.90 0.87 0.90 0.92 0.88 0.88 0.92 0.89 0.89 0.89 0.92 0.93 0.87 0.91 0.90

M-FUSE 0.85 0.86 0.85 0.84 0.86 0.86 0.85 0.83 0.86 0.83 0.85 0.83 0.86 0.86 0.84 0.85 0.85
SASFM 0.84 0.88 0.85 0.81 0.86 0.87 0.83 0.84 0.87 0.85 0.84 0.82 0.84 0.86 0.83 0.83 0.84

PNN 0.91 0.91 0.91 0.89 0.93 0.90 0.91 0.91 0.92 0.91 0.90 0.90 0.91 0.89 0.91 0.91 0.91
3D-CNN 0.93 0.94 0.93 0.91 0.95 0.93 0.93 0.93 0.95 0.93 0.93 0.92 0.94 0.94 0.93 0.92 0.93
ResNet 0.93 0.93 0.93 0.91 0.94 0.92 0.93 0.93 0.93 0.93 0.92 0.92 0.94 0.93 0.94 0.93 0.93

MHF-net 0.94 0.96 0.95 0.93 0.96 0.95 0.94 0.95 0.95 0.94 0.93 0.94 0.96 0.94 0.95 0.94 0.95
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(n) MHF-net(m) ResNet(j) SAMF(i) M-FUSE(h) CNMF

(g) GSA(a) RGB & LrHS (b) Ground truth (c) FUSE (d) ICCV2015 (e) GLP-HS (f) SFIM-HS

0

1

(l) 3D-CNN(k) PNN

Figure 9. (a) The simulated RGB (HrMS) and LrHS (left top) image of fake and real tomatoes, where we display the 10th (490nm) band
of the HS image. (b) The ground-truth HrHS image. (c)-(l) The results obtained by 10 competing methods.

Figure 10. An illustration of the simulated RGB images of the 16 testing samples in Chikusei data.

ments10 . This data set contains an HrMS image (RGB color
image) of size 1676× 2632× 3 and an LrHS image of size
419 × 658 × 8, while the HrHS image is unavailable. As
shown in Fig. 14, We select the top half part of the HrMS
(836× 2632× 3) and LrHS (209× 658× 8) image to train
the MHF-net, and exploit the remaining parts of the data
set as testing data. We first extract the training data into
144 × 144 × 3 overlapped HrMS and 36 × 36 × 3 over-
lapped LrHS patches and then generate the training sam-

10https://www.harrisgeospatial.com/DataImagery/
SatelliteImagery/HighResolution/WorldView-2.aspx

ples by the method shown in Fig. 3. The input HrHS, HrMS
and LrHS samples are of size 36× 36× 8, 36× 36× 3 and
9× 9× 8, respectively.

We show in Fig. 15-17 the fusion results of the 3 de-
marcated area in Fig. 14. Visual inspection evidently shows
that the proposed method gives the best result. By compar-
ing the result of ResNet and the proposed method, we can
find that the results of these two deep-learning-based meth-
ods are both clear, while the color and brightness of result
of the proposed method are evidently closer to the LrHS
image.
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(h) CNMF

(b) Ground truth

(i) M-FUSE

(c) FUSE

(j) SAMF

(d) ICCV2015

(m) ResNet

(e) GLP-HS

(n) MHF-net

(f) SFIM-HS (g) GSA(a) RGB & LrHS
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Figure 11. (a) The simulated RGB (HrMS) and LrHS (left bottom) images of a test sample in Chikusei data set, where we show the
composite image of the HS image with bands 70-100-36 as R-G-B. (b) The ground-truth HrHS image. (c)-(l) the results obtained by 10
competing methods, with a demarcated area zoomed in 4 times for easy observation.

(h) CNMF

(b) Ground truth

(i) M-FUSE

(c) FUSE

(j) SAMF

(d) ICCV2015

(m) ResNet

(e) GLP-HS

(n) MHF-net

(f) SFIM-HS (g) GSA(a) RGB & LrHS

(l) 3D-CNN(k) PNN

Figure 12. (a) The simulated RGB (HrMS) and LrHS (left bottom) images of a test sample in Chikusei data set, where we show the
composite image of the HS image with bands 70-100-36 as R-G-B. (b) The ground-truth HrHS image. (c)-(l) the results obtained by 10
competing methods, with a demarcated area zoomed in 4 times for easy observation.
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Figure 13. (a) The simulated RGB (HrMS) and LrHS (left bottom) images of a test sample in Chikusei data set, where we show the
composite image of the HS image with bands 70-100-36 as R-G-B. (b) The ground-truth HrHS image. (c)-(l) the results obtained by 10
competing methods, with a demarcated area zoomed in 4 times for easy observation.
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Figure 14. An illustration of RGB image of the World View-2 data. Upper: the training data. Lower: the testing data, where the results of
3 demarcated area will be shown in the later figures.
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Figure 15. (a) and (b) the HrMS (RGB) and LrHS images of the red demarcated area in Fig. 14, where we show the composite image of
the HS image with bands 5-3-2 as R-G-B. (c)-(l) The results obtained by 10 comparison methods.
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Figure 16. (a) and (b) the HrMS (RGB) and LrHS images of the blue demarcated area in Fig. 14, where we show the composite image of
the HS image with bands 5-3-2 as R-G-B. (c)-(l) The results obtained by 10 comparison methods.
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Figure 17. (a) and (b) the HrMS (RGB) and LrHS images of the green demarcated area in Fig. 14, where we show the composite image of
the HS image with bands 5-3-2 as R-G-B. (c)-(l) The results obtained by 10 comparison methods.
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