
Supplementary Materials for: Object Discovery in Videos
as Foreground Motion Clustering

A. PT-RNN Variants

The three PT-RNN variants to compute the weight wt,
standard, conv, and convGRU are shown in detail in Table
1. For standard, we show the equations for a single pixel
trajectory. It computes weights based on the pixel embed-
dings along that trajectory without knowledge of any other
trajectories. For conv, it uses a 3 × 3 convolution kernel
instead of the standard matrix multiply to include informa-
tion from neighboring trajectories. Lastly, for convGRU, we
design this architecture based on the convGRU architecture
[1] which has an explicit memory state to capture longer-
term dependencies. For all three variants, the hidden state is
{ht,Wt}. However, in the RNN we propagate h̃t

W̃t
, which

is the intermediate weighted sum at time t. This allows the
network to use knowledge of the previous weights and pixel
embeddings to calculate wt+1.

B. Proof of Proposition 1

We note the the following:
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Note that the unit vector that maximizes the inner product
with a given vector v is simply the normalized version of
v (if v 6= 0). Thus, the solution to the above problem is∑n
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C. Dataset Details

FT3D The Flying Things 3D dataset (FT3D) [6] is a syn-
thetic dataset comprised of approximately 2250 training and

450 test videos of 10 images each. Each video is created by
instantiating a background with static objects and populat-
ing the scene by having sampled foreground objects from
ShapeNet [5] flying along randomized 3D trajectories. Seg-
mentation masks of all objects (foreground and background)
are provided. While [6] does not provide information about
which objects are foreground, [11] provided foreground la-
bels by identifying the objects which underwent changes in
3D coordinates. We combined this with the object segmenta-
tion masks to produce foreground motion clustering masks.
We use this dataset for both evaluation and pre-training. Per-
formance on this dataset is measured by intersection over
union (IoU) of the foreground masks.

DAVIS The DAVIS2016 dataset [9] is a collection of 50
videos of approximately 3500 images, split into a 30 training
videos and 20 test videos. Each video is accompanied by
pixel-dense foreground labels at each frame. We evaluate
on the test set for video foreground segmentation only. The
DAVIS2017 dataset [10] expands on DAVIS2016 and pro-
vides 90 publicly available video sequences with full pixel-
dense annotation. DAVIS2017 focuses on semi-supervised
video segmentation (as opposed to unsupervised, i.e. fore-
ground segmentation) and provides multiple labels per video.
However, not every object labeled is foreground, and not
every foreground object is labeled, thus this dataset is not
suitable for the task of object discovery. Despite this, we
leverage the sequences for training. We use the J -measure
(IoU) and the F-measure as defined by [9] as evaluation
metrics for DAVIS2016.

FBMS The Freiburg-Berkeley motion segmentation
dataset [8] consists of 59 videos split into 29 training videos
and 30 test videos. The videos can be up to 800 images long,
and approximately every 20th frame has ground truth motion
segmentation labels. The inconsistency and ambiguity in
motion segmentation dataset labels inspired [2] to rigorously
define the problem of motion segmentation and provide cor-
rected labels which we use in this work. Performance on
this dataset is measured by precision, recall, F-score, and
∆Obj as described in [8, 4].
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Table 1: PT-RNN variants. For standard, we show the equations for pixel (i, j), while for the others we show equations in
terms of the entire H×W ×C feature map. Note that for standard, Wc ∈ R1×2C ,Ww ∈ R1×C , while for conv and convGRU,
Wc,Ww,Wz,Wr,Wĉ are 3× 3 convolution kernels. ∗ denotes convolution and σ is the sigmoid nonlinearity.

Others We also show results on the Complex Background
[7] and Camouflaged Animal [3] datasets. These datasets are
small and contain 5 and 9 sequences, respectively. Labels
are corrected and provided by [2]. We use the same metrics
for evaluation as the FBMS dataset.

D. DAVIS-m

We hand-select 42 videos from the DAVIS2017 [10] train
and val datasets (90 videos total) that roughly satisfy the
rubric of [2]. We denote this dataset as DAVIS-m, and
use it to supplement the small training dataset of FBMS
(29 videos). In hand-selecting these videos, we make sure
that only (and all of) the foreground objects are labeled,
and that the foreground objects are correctly separated into
different objects. For example, the video classic-car shows
two people in a car with a segmentation mask for the car,
and separate segmentation masks for the people. This is
incredibly difficult for an algorithm to properly segment
using motion cues (and does not fit the rubric of [2]), thus
is not included in DAVIS-m. The exact videos are given in
Table 2, where we show all 42 videos. There are 27 videos
that have a single object (i.e. video foreground segmentation)
and 15 videos with multiple objects.

E. Object Discovery results on FT3D

To facilitate motion segmentation and object discovery
research, we provide our motion segmentation results for the
FT3D [6] testset. We provide numbers for the metrics de-
scribed in [8, 4], namely precision, recall, F-score, and ∆Obj
for the multi-object and foreground settings. We trained our
full model for 150k iterations using the motion segmentation
labels we extracted from foreground labels [11] and object
segmentation labels [6]. The results are provided in Table 3.

Multi-object Foreground
boxing-fisheye bear

cat-girl bike-packing
disc-jockey blackswan
dog-gooses breakdance-flare
dogs-jump bus
gold-fish car-shadow

judo car-turn
kid-football cows

loading dance-twirl
night-race dog

pigs drift-chicane
planes-water drift-straight

sheep drift-turn
tuk-tuk elephant
walking flamingo

goat
hike

koala
libby
lucia

mallard-fly
mallard-water

parkour
rallye
rhino

rollerblade
soccerball

Table 2: DAVIS-m videos. The left column shows the 15
multi-object videos (2 or more objects), and the right column
shows the 27 single-object videos (i.e. video foreground
segmentation).



Multi-object Foreground
P R F ∆Obj P R F

74.3 75.1 72.9 2.46 96.4 97.7 96.9

Table 3: Results on FT3D

F. About the name “Object Discovery”
Our definition of object discovery is motivated by the

robotic application of discovering objects via their motion.
Our definition of object discovery is almost identical to that
of (multi-object) “motion segmentation” as defined in [2],
except that objects should be tracked even when there is no
observed flow at certain frames.
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