
Supplementary Material of Foreground-aware Image Inpainting

1. Network Architecture
In this section, we introduce the detailed configuration of

our networks. Our model is composed of three modules, the
contour detection module, the contour completion module
and the image completion module.

1.1. Contour Detection Module

The key component of our contour detection module is
the saliency object segmentation network. We describe the
details of this network here. The segmentation network
used in our paper consists of three major parts: High-level
Stream, Low-level Stream and Boundary Refine Module.

High-level Stream It takes the incomplete image as in-
put and uses the encoder part of a traditional segmentation
network to extract compact features. The output is a two-
channel low resolution feature map, which is used as the
bottle-neck of the network. In this module, we use Inception
V2 as the segmentation network. The input of the network
is a 3-channel image and the original output of the truncated
Inceptions-V2 is a 7x7 1024-channel feature map. In order
to get a 14x14 feature map, we use dilated convolution for
the last two inception modules. Finally, we add a convolu-
tion layer to generate the 2-channel 14x14 feature map.

Low-level Stream This module is a shallow network
composed of a single 7x7 convolution layer with a stride
of 1. The input to the shallow network is our incomplete
image. The output of this stream is a 64-channel feature
map that has the same spatial size as the input image.

Boundary Refine Module This module takes the low-
level and high-level feature as input and outputs the final re-
sult. Specifically, we first resize the high-level feature map
to the original resolution by bilinear upsampling. Then, we
concatenate the upsampled high-level feature map with the
low-level feature map and pass them to the densely con-
nected layer units. Each dense unit is composed of some
convolutional layers, and the output will be concatenated
with the input to the unit.

1.2. Contour Completion Module

Our contour completion module shares a similar archi-
tecture with GatedConv [1]. Specifically, it consists of two
stages. The first stage is a encoder-decoder network that
takes the incomplete contour, the incomplete image and the

mask as inputs, and outputs a coarse result of the completed
contour. The encoder is a cascade of several gated convolu-
tion blocks described in [1], and finally maps the input im-
age to feature maps with a spatial resolution of 64x64. The
decoder has a reverse architecture as the encoder and maps
the feature maps to a completed contour image. The coarse
contour is then concatenated with the mask and then input
to the refine network of the contour completion module, to
get the final result. The refine network has a two-stream en-
coder that maps the inputs to feature maps of size 64x64,
and a decoder that maps the feature maps to the final image.

The detailed configuration of the contour completion
module is as follows. For simplicity, we denote kernel size,
dilation, stride size and channel number as K, D, S, C, re-
spectively.

Coarse Network: K5S1C48 - K3S2C96 - K3S1C96
- K3S2C192 - K3S1C192 - K3S1C192 - K3D2S1C192
- K3D4S1C192 - K3D8S1C192 - K3D16S1C192 -
K3S1C192 - K3S1C192 - resize (2) - K3S1C96 - K3S1C96
- resize (2) - K3S1C48 - K3S1C24 - K3S1C3 - sigmoid.

Refine Network:

Branch-1: K5S1C48 - K3S2C96 - K3S1C96 -
K3S2C192 - K3S1C192 - K3S1C192 - K3D2S1C192 -
K3D4S1C192

Branch-2: K5S1C48 - K3S2C948 - K3S1C96 -
K3S2C192 - K3S1C192 - K3S1C192 (contextual attention)
- K3S1C192 - K3S1C192

Decoder: concat - K3S1C192 - K3S1C192 - resize (2) -
K3S1C96 - K3S1C96 - resize (2) - K3S1C48 - K3S1C24 -
K3S1C3 - sigmoid.

1.3. Image Completion Module

The image completion module has the same architecture
as the contour completion module, except for the inputs and
outputs to each network. The input to the refine network
is the coarse completed image, the completed contour and
the mask, the output of the coarse network and the refine
network is activated with tanh function, instead of sigmoid
which is used in the contour completion module.
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Figure 1. Qualitative comparison between the state-of-the-art methods. Please zoom in to see the details.
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Figure 2. Failure cases. Please zoom in to see the details.

2. Comparison with State-of-the-arts

2.1. Qualitative Results

In this section, we show more qualitative results. As can
be seen from Fig. 1, our model consistently outperforms the
state-of-the-art models.

2.2. Quantitative Results

To make a more thorough comparison, we also in-
clude the results for each model using Perceptual Similarity
LPIPS [2] on the feature space of VGG or AlexNet, and the
results are shown in Table 1.

Table 1. Additional quantitative metrics, smaller is better.
Method LPIPS (VGG) LPIPS (Alex)
PConv 0.064 0.044
GatedConv 0.063 0.048
Ours Guided 0.060 0.043

3. Contour Completion Results

We supplement more contour completion results here.
As is shown in Fig. 3, our contour completion module can
infer clean, sharp and reasonable contours, which can be of
great benefits to the completion of the image.

4. Failure Cases

In this section, we show some cases that the existing
models fail to inpaint. The results are shown in Fig. 2.
Seen from the figure, though our model is able to complete
a reasonable contour for the incomplete object, however,
sometimes, artifacts can still occur. In our future work, we
will try to reduce the artifacts while predicting a reasonable
shape for the objects.

Figure 3. Contour completion results. From left to right: image
with hole, saliency map of the incomplete image, incomplete con-
tour, completed contour and the completed image.
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