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Figure 1. Data acquisition vehicle with sensors.

We provide more details of our model, datasets, and ex-
periments in this supplementary material. Firstly, we de-
scribe the method of calibrations. Secondly, we give a
structural definition of GuideNet. Thirdly, more details of
our DrivingStereo dataset are described, including the in-
formation of collected sequences, segmentation examples,
and qualitative examples of disparity prediction.

1. Calibration
Our data acquisition vehicle and mounted sensors are

shown in Fig. 1. For the calibration of cameras and rectifica-
tion of stereo pairs, we use MATLAB Toolbox to compute
related parameters. For the joint calibration of LiDAR and
camera, we adopt the PnP method [6], where the corners of
checkboard are located in the two systems. In Fig. 2, the
LiDAR points are accurately projected onto images, which
shows our quality.
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† State Key Laboratory of Intelligent Technology and Systems, Bei-

jing National Research Center for Information Science and Technology,
and Center for Intelligent Connected Vehicles and Transportation.

2. GuideNet

The GuideNet follows the encoder-decoder architecture
as [7, 4]. We utilize the ResNet [5] as the backbone and
plug in the single-direction correlation module [8] to com-
pute matching cost between pair or image features. As
shown in Tab. 1, the GuideNet can be divided into three
parts: feature extractor, feature aggregator and disparity
encoder-decoder. The feature extractor is the shallow part
of ResNet-50 [5] whose weights are pretrained on Ima-
geNet dataset [3]. A correlation layer [8] is used to com-
pute matching cost on extracted features. Here, both max
displacement and padding size in correlation layer are set to
32. Then the feature aggregator concatenates the left feature
and cost volumes together. The disparity encoder contains
eight residual blocks and one convolutional block to learn
disparity features. Most of the residual blocks adopt dilated
pattern as [1] to expand the receptive field. In order to re-
cover the original resolution of the input image, three de-
convolutional blocks and one single-channel convolutional
layer are appended to regress the disparity map.

(a) Indoor examples

(b) Outdoor examples

Figure 2. Examples of joint calibration



Our GuideNet enables end-to-end disparity learning with
high speed and accuracy. We implement the model in Py-
Torch and train it with one NVIDIA 1080 Ti. The inference
time is as small as 12ms so that the model is possible to
be deployed in real-time applications of autonomous driv-
ing. In this paper, the main goal of GuideNet is to perform
guided filtering on the original disparity map projected from
multi-frame fused LiDAR point clouds.

3. DrivingStereo

3.1. Sequences

We collect 42 sequences from July to October in 2018.
As shown in Tab. 2, the total number of frames exceeds
180k. To avoid repeated samples, we sample 1 frame from
every 5 frames. All static fragments are removed according
to the GPS information. Finally, we obtain 182, 188 frames
to construct our DrivingStereo dataset. Among the 42 se-
quences, we select 38 as training dataset, and the remaining

(a) KITTI Stereo 2015 [9]

(b) Our dataset

Figure 3. Depth distribution of KITTI Stereo 2015 [9] and our
DrivingStereo.

4 sequences are split as testing dataset. Though the mounted
sensors on the vehicle are calibrated for every sequence, it
still remains errors on the projected images. As a result,
for testing split, we manually select 7, 751 high-quality im-
ages. In Fig. 3, we also analyze the depth distribution of
KITTI Stereo 2015 and our DrivingStereo. Because more
forward frames are fused, our disparity maps have farther
pixels compared with KITTI Stereo [9], which helps im-
prove the evaluation of distance-aware metrics.

3.2. Segmentation Examples

In order to generate semantic labels, we employ the PSP-
Net [10] which is pretrained on Cityscapes [2] to produce
primary segmentation results. Since the primary results are
not accurate, we adopt a free-space segmentation model to
rectify ground labels. A 2D detector is used to localize ve-
hicles and humans to modify related labels. Concretely,
the primary labels on vehicles and humans are validated
by the bounding boxes predicted from the detector, where
the ambiguous labels are masked as zero. We show several
qualitative examples in Fig. 4. It is worth noted that the la-
bels in rectangle boxes of vehicles or humans but outside of
the instances are marked as zero to reduce possible errors.
Though the pixels of vegetation, construction, and others
are not exactly accurate, it enables us to evaluate the gen-
eral performance by semantic-aware metrics on our dataset.

Figure 4. Qualitative segmentation examples in DrivingStereo.

3.3. Qualitative Examples

In Fig. 5, we provide several qualitative examples of dis-
parity maps predicted by our GuideNet. The GuideNet is
able to estimate reasonable disparity results in challenging
scenarios.



Table 1. Layer-wise structure of GuideNet. The “conv block” indicates the convolutional block, where a convolutional layer is followed
by batch normalization and ReLU activation. The “res block” denotes the residual block presented in [5]. The “corr 1D” stands for
single-direction correlation [8]. The “deconv block” represents the deconvolutional block that contains a deconvolutional layer, batch
normalization, and ReLU activation.

Layer Attribute Channels I/O Scaling Input

1. Feature Extractor

conv block1 1 kernel size = 3, stride = 2 3 / 64 1/2 input stereo images
conv block1 2 kernel size = 3, stride = 1 64 / 64 1/2 conv block1 1
conv block1 3 kernel size = 3, stride = 1 64 / 128 1/2 conv block1 2
max pooling kernel size = 3, stride = 2 128 / 128 1/4 conv block1 3
res block2 1 kernel size = 3, stride = 1 128 / 256 1/4 max pool block1
res block2 2 kernel size = 3, stride = 1 256 / 256 1/4 res block2 1
res block2 3 kernel size = 3, stride = 1 256 / 256 1/4 res block2 2
res block3 1 kernel size = 3, stride = 1 512 / 512 1/8 res block2 3

2. Feature Aggregator

conv block pre kernel size = 3, stride = 1 512 / 128 1/8 res block3 1
corr 1d max displacement = 32, single direction [8] 256 / 33 1/8 conv block pre

conv block trans kernel size = 3, stride = 1 128 / 128 1/8 conv block pre
concat aggregate corr 1d and conv block3 1 (128 + 33) / 161 1/8 corr 1d, conv block trans

3. Disparity Encoder-Decoder

res block3 2 kernel size = 3, stride = 1 161 / 128 1/8 concat
res block3 3 kernel size = 3, stride = 1 128 / 128 1/8 res block3 2
res block4 1 kernel size = 3, stride = 1, dilated pattern 128 / 256 1/8 res block3 3
res block4 2 kernel size = 3, stride = 1, dilated pattern 256 / 256 1/8 res block4 1
res block4 3 kernel size = 3, stride = 1, dilated pattern 256 / 256 1/8 res block4 2
res block4 4 kernel size = 3, stride = 1, dilated pattern 256 / 256 1/8 res block4 3
res block5 1 kernel size = 3, stride = 1, dilated pattern 256 / 512 1/8 res block4 4
res block5 2 kernel size = 3, stride = 1, dilated pattern 512 / 512 1/8 res block5 1

conv block5 3 kernel size = 3, stride = 1 512 / 128 1/8 res block5 2
deconv block1 kernel size = 3, stride = 2 128 / 64 1/4 conv block5 3
deconv block2 kernel size = 3, stride = 2 64 / 32 1/2 deconv block1
deconv block3 kernel size = 3, stride = 2 32 / 16 1 deconv block2

disp conv kernel size = 3, stride = 1 16 / 1 1 deconv block3

Figure 5. Qualitative examples in the coarse set where calibration errors exist.



Table 2. Details of the collected sequences. We provide the collected time, split set, number of frames, and attributes for each sequence.

Sequence Split Frames AttributesDate Time Original Selected
2018-07-09 16:11 Train 23,606 2,776 Urban, sunny
2018-07-10 09:54 Train 23,231 1,138 Urban, sunny
2018-07-11 14:48 Test 35,424 1,721 Urban, suburban, cloudy
2018-07-16 15:18 Train 9,789 1,036 Urban, suburban, sunny
2018-07-16 15:37 Train 32,988 5,080 Urban, suburban, sunny, cloudy
2018-07-18 10:16 Train 33,784 4,639 Urban, sunny
2018-07-18 11:25 Train 29,185 3,626 Urban, sunny
2018-07-24 14:31 Train 32,136 4,721 Urban, cloudy
2018-07-27 11:39 Train 16,679 1,522 Urban, cloudy
2018-07-31 11:07 Train 7,461 1,355 Urban, cloudy
2018-07-31 11:22 Train 6,000 811 Urban, cloudy
2018-08-01 11:13 Test 30,591 1,532 Elevated, highway, cloudy
2018-08-07 13:46 Test 109,475 2,861 Suburban, country road, sunny, cloudy
2018-08-13 15:32 Train 24,349 1,052 Urban, suburban, sunny, cloudy
2018-08-13 17:45 Train 10,739 802 Urban, suburban, sunny
2018-08-17 09:45 Train 28,740 1,667 Urban, suburban, rainy, foggy
2018-10-10 07:51 Train 34,812 4,514 Urban, suburban, cloudy
2018-10-11 16:03 Test 33,327 1,637 Suburban, country road, sunny, cloudy
2018-10-11 17:08 Train 7,471 1,119 Suburban, country road, dusky
2018-10-12 07:57 Train 33,284 5,477 Urban, suburban, cloudy
2018-10-15 11:43 Train 32,553 4,950 Country road, cloudy
2018-10-16 07:40 Train 32,248 4,651 Urban, suburban, country road, cloudy
2018-10-16 11:13 Train 16,287 2,315 Urban, suburban, country road, cloudy
2018-10-16 11:43 Train 18,530 2,768 Urban, suburban, country road, cloudy
2018-10-17 14:35 Train 30,786 4,437 Urban, suburban, sunny, foggy
2018-10-17 15:38 Train 34,704 4,625 Urban, suburban, sunny, cloudy
2018-10-18 10:39 Train 31,679 4,670 Urban, suburban, cloudy
2018-10-18 15:04 Train 32,711 5,128 Urban, suburban, sunny, cloudy
2018-10-19 09:30 Train 31,927 7,565 Urban, suburban, sunny
2018-10-19 10:33 Train 34,625 7,937 Suburban, sunny, cloudy
2018-10-22 10:44 Train 32,294 7,808 Suburban, cloudy, foggy
2018-10-23 08:34 Train 33,464 7,842 Urban, suburban, cloudy
2018-10-23 13:59 Train 34,607 6,064 Urban, sunny, cloudy
2018-10-23 15:06 Train 31,185 6,543 Urban, cloudy
2018-10-24 11:01 Train 29,922 6,870 Urban, country road, sunny, cloudy
2018-10-24 14:13 Train 30,911 6,665 Urban, sunny, cloudy
2018-10-25 07:37 Train 33,243 6,905 Urban, sunny, foggy
2018-10-26 15:24 Train 29,747 7,128 Urban, suburban, sunny
2018-10-27 08:54 Train 33,286 7,945 Suburban, sunny
2018-10-27 10:02 Train 31,679 6,672 Suburban, sunny
2018-10-30 13:45 Train 30,383 6,057 Urban,sunny, cloudy
2018-10-31 06:55 Train 31,707 7,557 Suburban, cloudy

Sequences Total: 42 train: 38 test: 4
Frames Total: 182,188 train: 174,437 test: 7,751
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