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In this supplementary material we elaborate on imple-
mentation details of network architecture, as well as show
extended results for our style transfer method and multi-
stroke fusion control.

1. Implementation Details
We assemble self-attention module into the bottleneck

layer of an encoder-decoder framework to form our self-
attention autoencoder. The network architecture of our
model is presented in Figure 2 of the main paper. In this
section, we present more details of our self-attention au-
toencoder.

1.1. Encoder-decoder Architecture

Table 1 and 2 illustrate the detailed configurations of the
encoder and decoder, respectively. The encoder is made of
the first few layers of the VGG-19 [4] network. We take
input image with size 512× 512× 3 as an example and list
the feature size for each layer. The max pooling operation
is replace by the average pooling operation. The decoder is
symmetric to the encoder, with all pooling layers replaced
by nearest up-sampling. All convolutional layers use reflec-
tion padding to avoid border artifacts [1]. There are some
notations; N: the number of output channels, K: kernel size,
S: stride size.

As suggested in [2, 3], it is advantageous to match fea-
tures across different levels in the VGG-19 encoder to fully
capture the charateristics of the style. We use skip connec-
tions to perform style enhancement using adaptive instance
normalization [1]. The three connections are conv1 1 →
inv con1 2, conv2 1→ inv con2 2, conv3 1→ inv con3 2,
feeding with both output features.

1.2. Self-Attention Module

The architecture of the self-attention module is shown in
Figure 1. Different from the way used in [5], where the out-
put of self-attention feature map is added back to the input
feature map to learn non-local evidence. We proposed to
obtain a self-attention residual Rx by multiplying the fea-
ture map fx with self-attention feature map Ax, and find it
is effective to capture saliency characteristics.

2. Extra Ablation Study
2.1. Effects of style enhancement.

To demonstrate the capability of skip connections for
style enhancement. We present the stylized results without
the connections in Figure 2. By matching features across
multiple levels, the results could capture more low-level
characteristics (e.g., colors) of style images, thus exhibit
higher fidelity to styles in terms of color saturation.

2.2. Effects of sparse loss Latt.

The sparse loss Latt is to encourage the self-attention
module to pay attention to small salient regions instead of
the whole image. We retrain our model without Latt and
present the result in Fig. 3. It can be seen in Fig. 3(d) that
without the sparse loss, the network tends to predict more
trival parts as salient regions.

3. More Results of Our Method
In this part, we show some additional stylization results

by the proposed method, as visualized in Figure 7 and 8.
Following the default setting in the main paper, we use three
stroke scenario for the proposed style transfer here.

4. Multi-stroke Fusion Control
Here we explain more details of the advantage of our

attention-aware multi-stroke method.

4.1. Stroke control vs weight control

The weight control refers to controlling the balance be-
tween stylization and content preservation. This strategy
has been adopted in previous style transfer methods [1, 2,
3]. As visualized in Figure 4, the weight control strat-
egy directly interpolate on deep feature space as weighted
sum of content and stylized features, demonstrating minor
variations among range [0, 1]. Our multi-scale style swap
enables continuous and discriminative stylized patterns by
changing the scale coefficient in eq.(8) of the paper, and fur-
ther generate integrated results via different combinations
efficiently.



Table 1: Details of the encoder. We take input image with size 512 × 512 × 3 as an example.

Layer Layer Information Feature Size
conv1 1 Conv(N64, K3x3, S1), ReLU (512, 512, 3) → (512, 512, 64)
conv1 2 Conv(N64, K3x3, S1), ReLU (512, 512, 64) → (512, 512, 64)
pool 1 AveragePooling(K2x2, S2) (512, 512, 64) → (256, 256, 64)
conv2 1 Conv(N128, K3x3, S1), ReLU (256, 256, 64) → (256, 256, 128)
conv2 2 Conv(N128, K3x3, S1), ReLU (256, 256, 128) → (256, 256, 128)
pool 2 AveragePooling(K2x2, S2) (256, 256, 128) → (128, 128, 128)
conv3 1 Conv(N256, K3x3, S1), ReLU (128, 128, 128) → (128, 128, 256)
conv3 2 Conv(N256, K3x3, S1), ReLU (128, 128, 256) → (128, 128, 256)
conv3 3 Conv(N256, K3x3, S1), ReLU (128, 128, 256) → (128, 128, 256)
conv3 4 Conv(N256, K3x3, S1), ReLU (128, 128, 256) → (128, 128, 256)
pool 3 AveragePooling(K2x2, S2) (128, 128, 256) → (64, 64, 256)
conv4 1 Conv(N512, K3x3, S1), ReLU (64, 64, 256) → (64, 64, 512)

Table 2: Details of the decoder.

Layer Layer Information Feature Size
inv conv4 1 Conv(N256, K3x3, S1), ReLU (64, 64, 512) → (64, 64, 256)
upsample 1 Nearest Upsampling(x2) (64, 64, 256) → (128, 128, 256)
inv conv3 4 Conv(N256, K3x3, S1), ReLU (128, 128, 256) → (128, 128, 256)
inv conv3 3 Conv(N256, K3x3, S1), ReLU (128, 128, 256) → (128, 128, 256)
inv conv3 2 Conv(N256, K3x3, S1), ReLU (128, 128, 256) → (128, 128, 256)
inv conv3 1 Conv(N128, K3x3, S1), ReLU (128, 128, 256) → (128, 128, 128)
upsample 2 Nearest Upsampling(x2) (128, 128, 128) → (256, 256, 128)
inv conv2 2 Conv(N128, K3x3, S1), ReLU (256, 256, 128) → (256, 256, 128)
inv conv2 1 Conv(N64, K3x3, S1), ReLU (256, 256, 128) → (256, 256, 64)
upsample 3 Nearest Upsampling(x2) (256, 256, 64) → (512, 512, 64)
inv conv1 2 Conv(N64, K3x3, S1), ReLU (512, 512, 64) → (512, 512, 64)
inv conv1 1 Conv(N3, K3x3, S1), ReLU (512, 512, 64) → (512, 512, 3)

4.2. Fusion control strategy

As mentioned in Section 4.4, our method can effec-
tively integrate multiple stroke patterns with different con-
trol strategies. We present the fusion procedure in Figure 5.
Given K+1 stroke feature maps (f0cs, f

1
cs, . . . , f

K
cs ) and the

corresponding attention map Âc, we first generate K+1 clus-
tering centers with attention values according to eq.(10),
and then assign sequentially for stroke sizes, with higher
attention values for finer stroke patterns. The integrated fea-
ture map is the weighted sum of the K+1 stroke feature maps
based on eq. (11-12) in the paper.

The level of detail for multi-stroke fusion can be con-
trolled by the smoothing factor γ. As visualized in Figure 6,
we present the influence of different smoothing values for
four-stroke fusion scenario. The larger it is, the more con-
tributions for single stroke on corresponding attention area,
leading to a more discriminative effect among these stroke

patterns.
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Figure 1: The architecture of our self-attention module. The ⊗ denotes matrix multiplication.

Figure 2: The comparison between method without the style enhancement by removing the skip con-
nections. By matching multiple low level features, our results exhibit higher fidelity to styles in terms of
color saturation.
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Figure 3: The effect of sparse loss Latt with different weight λatt. (a) Content. (b) |Ax| with λatt = 6
(paper setting). (c) |Ax| with λatt = 1. (d) |Ax| with λatt = 0 (without Latt).

Figure 4: Comparison between our multi-scale stroke control and generally used weight control. The
weight control simply conduct interpolation as weighted sum of content and stylized features, which
demonstrate minor variations among range [0,1]. Our method could flexibly generate continuous and
discriminative stylized patterns.



Figure 5: The procedure for our multi-stroke fusion. In the attention histogram, we mark the attention
value of clustering centers obtained by applying k-means on the attention map Âc, with higher atten-
tion values assigned to finer stroke patterns. The integrated feature map is generated seamlessly as the
weighted sum of these stroke feature maps according to the proposed fusion strategy.

Figure 6: Varying values of smoothing factor γ affecting the fusion contribution for each stroke pattern.
Each stroke size is assigned with an intensity center for a specific attention area. With the increasing of
γ, each stroke pattern tends to contribute more on its own attention area, leading to a more discriminative
effect among these stroke patterns.



Figure 7: More results of our attention-aware multi-stroke style transfer method (Set 1). The 1st row
is the content images, the 2nd row is the corresponding attention maps and the 1st column is the style
images.



Figure 8: More results of our attention-aware multi-stroke style transfer method (Set 2). The 1st row
is the content images, the 2nd row is the corresponding attention maps and the 1st column is the style
images.


